• Title/Summary/Keyword: resist chloride ion penetration

Search Result 11, Processing Time 0.025 seconds

Ability to Resist Chloride Ion Penetration and Dry Shrinkage Evaluation of Magnesium Phosphate Ceramics (인산마그네슘 세라믹의 염소 이온 투과 저항성 및 길이변화 특성에 관한 성능 평가)

  • Ko, Jeong-Won;Yang, Wan-Hee;Park, Dong-Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.17 no.4
    • /
    • pp.341-348
    • /
    • 2017
  • The performance degradation of concrete pavement by winter deicer is very serious in Korea, and its maintenance and rehabilitation brings a high expense. Therefore, a suitable method for rehabilitation of such concrete pavement and repair material of proper performance are required. In this study, the properties of compressive strength, ability to resist chloride ion penetration, and properties of dry shrinkage of magnesium phosphate ceramics were assessed to evaluate its applicability as a repair material for concrete pavement in Korea. As a result, the mortar flow showed a normal level of 190 mm, but the viscosity was high and the self-flow ability was poor. The setting time was 12 minutes, leading very rapid-hardening, and thus a prompt work was required. The compressive strength of mortar was 38.4MPa in 2 hours, 73.8MPa in 24 hours, and 111.0MPa in 28 days, showing a significant level. As a result of the test to chloride ion penetration resistance, mortar showed 143 Coulombs, and concrete showed 172.6 Coulombs, which fell under very low level. The drying shrinkage of MPC concrete in 40 days was below $60{\times}10-6$, and comparing with normal cement concrete, it showed the level below 1/10 of other concrete to secure an excellent volume stability. As above, magnesium phosphate ceramics has excellent strength performance, chloride ion penetration resistance, and volume stability, and this in the future shall be used in construction under the consideration of working time or workability, requiring further improvement for such performance.

Durability assessment of self-compacting concrete with fly ash

  • Deilami, Sahar;Aslani, Farhad;Elchalakani, Mohamed
    • Computers and Concrete
    • /
    • v.19 no.5
    • /
    • pp.489-499
    • /
    • 2017
  • Self-Compacting Concrete (SCC) is a new technology capable to flow without segregation or any addition of energy which leads to efficient construction and cost savings. In this study, the effect of replacing the Ordinary Portland Cement (OPC) with Fly Ash (FA) on the strength, durability of the concrete was investigated experimentally, and carbon footprint and cost were also assessed. Four different replacement FA ratios (0%, 20%, 40% and 60%) were used to create four SCC mixes. Standard test methods were used to determine the workability, strength, and durability of the SCC mixes including resist chloride ion penetration, water permeability, water absorption, and initial surface absorption. The axial cube compressive strength tests were performed on the SCC mixes at 1, 7, 14, 28 and 35 days. Replacing the OPC with FA had a significant positive impact on chloride iron penetration resistance and water absorption but had a considerable negative impact on the compressive strength. The SCC mix with 60% FA had 36.7% and 15.8% enhancement in the resistance to chloride ion penetration and water absorption, respectively. Evaluation of the carbon footprint and the cost of each SCC mixes showed the $CO_2$ emissions mixes 1, 2, 3 and 4 were significantly reduced by increasing the FA content from 0% to 60%. Compared with the control mix, the cost of all mixes increased when the FA content increased, but no significant differences were seen between the estimated costs of all four mixes.

An Experimental Study on the Chloride Attack Resistibility of Alkali-Activated Ternary Blended Cement Concrete (알칼리 활성화 3성분계 혼합시멘트의 염해 저항성에 관한 실험적 연구)

  • Yang, Wan-Hee;Hwang, Ji-Soon;Jeon, Chan-Soo;Lee, Sea-Hyun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.4
    • /
    • pp.321-329
    • /
    • 2016
  • The use of ternary blended cement consisting of Portland cement, granulated blast-furnace slag (GGBFS) and fly ash has been on the rise to improve marine concrete structure's resistance to chloride attack. Therefore, this study attempted to investigate changes in chloride attack resistibility of concrete through NT Build 492-based chloride migration experiments and test of concrete's ability to resist chloride ion penetration under ASTM C 1202(KS F 2271) when 1.5-2.0% of alkali-sulfate activator (modified alkali sulfate type) was added to the ternary blended cement mixtures (40% ordinary Portland cement + 40% GGBFS + 20% fly ash). Then, the results found the followings: Even though the slump for the plain concrete slightly declined depending on the use of the alkali-sulfate activator, compressive strength from day 2 to day 7 improved by 17-42%. In addition, the coefficient from non-steady-state migration experiments for the plain concrete measured at day 28 decreased by 36-56% depending on the use of alkali-sulfate. Furthermore, total charge passed according to the test for electrical indication of concrete's ability to resist chloride ion penetration decreased by 33-62% at day 7 and by 31-48% at day 28. As confirmed in previous studies, reactivity in the GGBFS and fly ash improved because of alkali activation. As a result, concrete strength increased due to reduced total porosity.

Effect of Concrete Coating Materials for the Improvement of Concrete Durability (콘크리트 표면도장에 의한 내구성증진 효과)

  • 문한영;김성수;안태송;김홍삼
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.433-436
    • /
    • 1999
  • Long-term durability of the reinforced concrete structures exposed to marine environment deteriorates seriously by the attack of the chloride ion from see water results in corrosion of steel reinforcement in concrete. Their coating effect is aluminum oxide-isocyanate-based coating material, resistance of chloride penetration, carbonation and freezing and thawing resistance were compared to acryl-based coating material and sealer type o waterproofing material. Aluminum oxide-isocyante-based and acryl-based coating material show higher resistance to chloride penetration and carbonation than the sealer type do waterproofing material and aluminum oxide-isocyanate-based coating resist about 99% of chloride penetration. Resultants to the accelerated test for freezing and thawing, coating concrete show higher resistance than non-coating concrete, respectively.

  • PDF

The Mechanical Properties of Concrete Using Blended Super Low Heat Cement (혼합형 초저발열 시멘트를 사용한 콘크리트의 물성-현수교 앵커리지 콘크리트 대상-)

  • 송용순;강석화;손명수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.341-344
    • /
    • 1999
  • In the case of the offshore concrete structures like the anchorage block of a suspension bridge of Kwangan Grand Road, there is a need of the concrete which has low heat of hydration and good resistance for sea-water attack. In this study, the blended super low heat cement which satisfies that requirement was developed and several tests were carried out. The concrete using the blended super low heat cement showed lower adiabatic temperature rise than 3$0^{\circ}C$ and good early strength. Also, its passed charge(coulomb) to resist chloride ion penetration was very low.

  • PDF

The Application of Super-flowing Concrete Using Low Heat Cement (저발연 시멘트를 사용한 초유동 콘크리트의 물성)

  • 노재호;한정호;송용순;최이현;천재원
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.04a
    • /
    • pp.649-656
    • /
    • 1997
  • The properties of super-flowing concrete with low heat cement were experimentally investigated and compared with ordinary 25-240-15 concrete with type Vcement. The cement content of super-flowing concrete with the low heat cement was 400 kg/$\textrm{m}^3$. However the hydration heat of super-flowing concrete is relatively lower than that ordinary concrete with type V cement. Also the ability to resist chloride ion penetration of super-flowing concrete with low heat cement is 5 times better than that of the ordinary concrete.

  • PDF

A Study on the Resistance to Seawater Attack of Mortars and Concretes Incorporating Limestone Powder (석회석미분말을 혼입한 모르타르 및 콘크리트의 내해수성 연구)

  • Lee, Seung Tae;Jung, Ho Seop
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.1
    • /
    • pp.129-137
    • /
    • 2011
  • This study aims to evaluate the resistance to seawater attack of mortars and concretes incorporating limestone powder (0, 10, 20 and 30% of cement by mass). In order to achieve this goal, both chemical resistance by seawater and chloride ions penetration resistance of mortars or concretes were regularly monitored. From the test results, it was observed that the durability of cement matrix was greatly dependent on the replacement ratios of limestone powder. In other words, performance of cement matrix with 10% limestone powder was similar to that of OPC matrix. However, it was found that a high replacement ratio of limestone powder was ineffective to resist seawater attack.

The Experimental Study on the Durability of the 70, 100MPa Grade High Strength Concrete with the Land Sand (육상모래를 사용한 70, 100MPa급 고강도 콘크리트의 내구특성에 관한 실험적 연구)

  • Park, Jung-Jun;Ahn, Gi-Hong;Ryu, Gum-Sung;Kang, Su-Tae;Kim, Sung-Wook;Lee, Jang-Hwa
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.201-202
    • /
    • 2010
  • In this Study, we manufactured the 70, 100MPa grade high strength concrete with the land sand by batcher plant in the field. In order to verify attainment of design compressive strength and the durability of the manufactured concretes we examined the tests such as compressive strength test, freeze-thaw test, carbonation test, test for concrete's ability to resist chloride ion penetration.

  • PDF

An Experimental Stuty on Mass Concrete Durability & Hydration Heat Generation Characteristics according to Kinds of Cement & Form (시멘트 및 거푸집 종류에 따른 매스콘크리트의 내구성 및 수화발열특성에 관한 실험적 연구)

  • Kim, Kang-Min;Moon, Sang-Bong;Song, Yong-Soon;Kang, Suck-Hwa;Choi, Sam-Soon;Cho, Yong-Yeon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.359-360
    • /
    • 2009
  • This Study is performed Mock-up test accounting for height of placement to review behavior of mass concrete according to kinds of cement & form. First, we measured hydration heat and show a different hydration heat generation characteristics as compared with each other. And we measured mortar outflow, the strength of concrete core and standard specimens, concrete's ability to resist chloride ion penetration in order to durability estimation of concrete. This study was aims to improve quality of mass concrete under marine environment.

  • PDF

Performance Evaluation of Bridge Deck Materials based on Ordinary Portland Cement Concrete (보통 포틀랜드 콘크리트 기반 교면포장 재료 성능 평가)

  • Nam, Jeong-Hee;Jeon, Seong Il;Kwon, Soo Ahn
    • International Journal of Highway Engineering
    • /
    • v.19 no.6
    • /
    • pp.129-137
    • /
    • 2017
  • PURPOSES : The purpose of this study is to develop bridge deck concrete materials based on ordinary Portland cement concrete, and to evaluate the applicability of the developed materials through material properties tests. METHODS : For field implementation, raw material (cement, fine aggregate, and coarse aggregate) properties, fresh concrete properties (slump and air content), strength (compressive, flexural and bond strength) gain, and durability (freeze-thaw resistance, scaling resistance, and rapid chloride penetrating resistance) performance were evaluated in the laboratory. RESULTS : For the selected binder content of $410kg/m^3$, W/B = 0.42, and S/a = 0.48, the following material performance results were obtained. Considering the capacity of the deck finisher, a minimum slump of 150 mm was required. At least 6 % of air content was obtained to resist freeze-thaw damage. In terms of strength, 51.28 MPa of compressive strength, 7.41 MPa of flexural strength, and 2.56 MPa of bond strength at 28 days after construction were obtained. A total of 94.9 % of the relative dynamic modulus of elasticity after 300 cycles of freeze-thaw resistance testing and $0.0056kg/m^2$ of weight loss in a scaling resistance test were measured. However, in a chloride ion penetration resistance test, the result of 3,356 Coulomb, which exceeds the threshold value of the standard specification (1000 Coulomb at 56 days) was observed. CONCLUSIONS : Instead of using high-performance modified bridge deck materials such as latex or silica fume, we developed an optimum mix design based on ordinary Portland cement concrete. A test construction was carried out at ramp bridge B (bridge length = 111 m) in Gim Jai City. Immediately after the concrete was poured, the curing compound was applied, and then wet mat curing was applied for 28 days. Considering the fact that cracks did not occur during the monitoring period, the applicability of the developed material is considered to be high.