• Title/Summary/Keyword: resilient building

Search Result 136, Processing Time 0.021 seconds

Control of wind-induced motion in high-rise buildings with hybrid TM/MR dampers

  • Aly, Aly Mousaad
    • Wind and Structures
    • /
    • v.21 no.5
    • /
    • pp.565-595
    • /
    • 2015
  • In recent years, high-rise buildings received a renewed interest as a means by which technical and economic advantages can be achieved, especially in areas of high population density. Taller and taller buildings are being built worldwide. These types of buildings present an asset and typically are built not to fail under wind loadings. The increase in a building's height results in increased flexibility, which can lead to significant vibrations, especially at top floors. Such oscillations can magnify the overall loads and can be annoying to the top floors' occupants. This paper shows that increased stiffness in high-rise buildings may not be a feasible solution and may not be used for the design for comfort and serviceability. High-rise buildings are unique, and a vibration control system for a certain building may not be suitable for another. Even for the same building, its behavior in the two lateral directions can be different. For this reason, the current study addresses the application of hybrid tuned mass and magneto-rheological (TM/MR) dampers that can work for such types of buildings. The proposed control scheme shows its effectiveness in reducing floors' accelerations for both comfort and serviceability concerns. Also, a dissipative analysis carried out shows that the MR dampers are working within the possible range of optimum performance. In addition, the design loads are dramatically reduced, creating more resilient and sustainable buildings. The purpose of this paper is to stimulate, shape, and communicate ideas for emerging control technologies that are essential for solving wind related problems in high-rise buildings, with the objective to build the more resilient and sustainable infrastructure and to optimally retrofit existing structures.

Mushroom skeleton to create rocking motion in low-rise steel buildings to improve their seismic performance

  • Mahdavi, Vahid;Hosseini, Mahmood;Gharighoran, Alireza
    • Earthquakes and Structures
    • /
    • v.15 no.6
    • /
    • pp.639-654
    • /
    • 2018
  • Rocking motion have been used for achieving the 'resilient buildings' against earthquakes in recent studies. Low-rise buildings, unlike the tall ones, because of their small aspect ratio tend to slide rather than move in rocking mode. However, since rocking is more effective in seismic response reduction than sliding, it is desired to create rocking motion in low-rise buildings too. One way for this purpose is making the building's structure rock on its internal bay(s) by reducing the number of bays at the lower part of the building's skeleton, giving it a mushroom form. In this study 'mushroom skeleton' has been used for creating multi-story rocking regular steel buildings with square plan to rock on its one-by-one bay central lowest story. To show if this idea is effective, a set of mushroom buildings have been considered, and their seismic responses have been compared with those of their conventional counterparts, designed based on a conventional code. Also, a set of similar buildings with skeleton stronger than code requirement, to have immediate occupancy (IO) performance level, have been considered for comparison. Seismic responses, obtained by nonlinear time history analyses, using scaled three-dimensional accelerograms of selected earthquakes, show that by using appropriate 'mushroom skeleton' the seismic performance of buildings is upgraded to mostly IO level, while all of the conventional buildings experience collapse prevention (CP) level or beyond. The strong-skeleton buildings mostly present IO performance level as well, however, their base shear and absolute acceleration responses are much higher than the mushroom buildings.

Analysis on the Vibration Transmission Characteristics of the Standard Test Building by Using Standard Impact Source (경량 및 중량 충격원에 의한 표준 실험동의 진동전달 특성 분석)

  • Jin, Pil-Hwa;Kim, Heung-Sik;Kim, Do-Heong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.371-371
    • /
    • 2006
  • The purpose of this study is to provide a fundamental data for efficient and economical reduction method and predict ion method of floor impact noise. In order to get the useful results, the measurement on the vibration transmission characteristics of standard test building with four rooms by using heavy and light-weighed impact source were carried out. In this measurement various conditions such as the change of test structure construction, the pick-up sensor location, the excitation posit ion, and the resilient material types were applied to get the vibration characteristics transmitted from excitation room to adjacent rooms.

  • PDF

The Prepaid Trust and Corporate Turnaround: A Study on the Corporate Turnaround via System Dynamics Approach (공여된 신뢰와 기업회생 : 시스템 다이내믹스 기업회생 모형 연구)

  • 박헌준;김상준
    • Korean System Dynamics Review
    • /
    • v.3 no.1
    • /
    • pp.131-163
    • /
    • 2002
  • This study examines the effect that the prepaid trust has in saving the troubled business. Developing a formal system dynamics model, building on case studies of corporate turnaround, we developed a mathematical model on the relationship between the prepaid trust and corporate turnaround. The Model shows how the prepaid trust can shift an organizational system from fragile condition to resilient condition of a firm. This study elaborartes a new set of conditions under which organizations may turn around via prepaid trust of stakeholders.

  • PDF

New method environment for art design of nanocomposite brick facade of the building

  • Jie Xia;Gholamreza Soleimani Jafari;F. Ghoroughi
    • Steel and Composite Structures
    • /
    • v.51 no.5
    • /
    • pp.499-507
    • /
    • 2024
  • The paper delves into an emerging paradigm shift in architectural design, focusing on the development of a cutting-edge methodological framework for the artistic enhancement of nanocomposite brick facades in building construction. This innovative approach represents a fusion of art and science, harnessing the potential of advanced nanotechnology to redefine the aesthetic and functional properties of building exteriors. Central to this new methodology is the integration of state-of-the-art materials and fabrication techniques, aimed at not only elevating the visual appeal of architectural structures but also enhancing their structural robustness and environmental sustainability. By leveraging the unique characteristics of nanocomposite materials, the proposed method opens up new possibilities for pushing the boundaries of traditional brick facade design. Through a meticulous exploration of the intricacies involved in implementing this novel approach, the paper elucidates the transformative impact it can have on the architectural landscape. By marrying creativity with technical precision, the method environment for art design of nanocomposite brick facades promises to usher in a new era of sustainable, visually captivating, and structurally resilient building facades that are poised to redefine the very essence of architectural aesthetics.

Residual drift analyses of realistic self-centering concrete wall systems

  • Henry, Richard S.;Sritharan, Sri;Ingham, Jason M.
    • Earthquakes and Structures
    • /
    • v.10 no.2
    • /
    • pp.409-428
    • /
    • 2016
  • To realise the full benefits of a self-centering seismic resilient system, the designer must ensure that the entire structure does indeed re-center following an earthquake. The idealised flag-shaped hysteresis response that is often used to define the cyclic behaviour of self-centering concrete systems seldom exists and the residual drift of a building subjected to an earthquake is dependent on the realistic cyclic hysteresis response as well as the dynamic loading history. Current methods that are used to ensure that re-centering is achieved during the design of self-centering concrete systems are presented, and a series of cyclic analyses are used to demonstrate the flaws in these current procedures, even when idealised hysteresis models were used. Furthermore, results are presented for 350 time-history analyses that were performed to investigate the expected residual drift of an example self-centering concrete wall system during an earthquake. Based upon the results of these time-history analyses it was concluded that due to dynamic shake-down the residual drifts at the conclusion of the ground motion were significantly less than the maximum possible residual drifts that were observed from the cyclic hysteresis response, and were below acceptable residual drift performance limits established for seismic resilient structures. To estimate the effect of the dynamic shakedown, a residual drift ratio was defined that can be implemented during the design process to ensure that residual drift performance targets are achieved for self-centering concrete wall systems.

Seismic performance of a resilient low-damage base isolation system under combined vertical and horizontal excitations

  • Farsangi, Ehsan Noroozinejad;Tasnimi, Abbas Ali;Yang, T.Y.;Takewaki, Izuru;Mohammadhasani, Mohammad
    • Smart Structures and Systems
    • /
    • v.22 no.4
    • /
    • pp.383-397
    • /
    • 2018
  • Traditional base isolation systems focus on isolating the seismic response of a structure in the horizontal direction. However, in regions where the vertical earthquake excitation is significant (such as near-fault region), a traditional base-isolated building exhibits a significant vertical vibration. To eliminate this shortcoming, a rocking-isolated system named Telescopic Column (TC) is proposed in this paper. Detailed rocking and isolation mechanism of the TC system is presented. The seismic performance of the TC is compared with the traditional elastomeric bearing (EB) and friction pendulum (FP) base-isolated systems. A 4-storey reinforced concrete moment-resisting frame (RC-MRF) is selected as the reference superstructure. The seismic response of the reference superstructure in terms of column axial forces, base shears, floor accelerations, inter-storey drift ratios (IDR) and collapse margin ratios (CMRs) are evaluated using OpenSees. The results of the nonlinear dynamic analysis subjected to multi-directional earthquake excitations show that the superstructure equipped with the newly proposed TC is more resilient and exhibits a superior response with higher margin of safety against collapse when compared with the same superstructure with the traditional base-isolation (BI) system.

Resiliency Assessment of Sarasota Bay Watershed, Florida

  • Lee, Hye-Kyung
    • Journal of KIBIM
    • /
    • v.9 no.1
    • /
    • pp.32-41
    • /
    • 2019
  • As population in Sarasota and Manatee Counties, Florida in the United States is projected to increase, land use changes from land development happen continuously. The more land development means the more impervious surfaces and stormwater runoff to Sarasota Bay, which causes critical impact on the resiliency of the ecosystem. In order to decrease its impact on water quality and the ecosystem function of Sarasota Bay, it is important to assess the resilient status of communities that create negative impacts on the ecosystem. Three types of guiding principles of resiliency for Sarasota Bay watershed are suggested. To assess resiliency status, three indexes - vulnerability index, socio-economic index, and ecological index are developed and analyzed by using geographic information system for each census tract in the two counties. Since each indicator for vulnerability index, socio-economic index, and ecological index is measured with different metrics, statistical standardizing method - distance from the best and worst performers is used for this study to directly compare and combine them all to show total resilience score for each census tract. Also, the ten most and the ten least scores for the total resilience index scores are spatially distributed for better understanding which census tracts are most or least resilient. As Sarasota Watershed boundary is also overlaid, it is easy to understand how each census tract attains its resilience and how each census tract impacts to Sarasota Bay ecosystem. Based on results of the resiliency assessment several recommendations, guidelines, or policies for attaining or enhancing resiliency are suggested.

Risk and Responsibility: Understanding the Distribution of Serious Accident Punishment Act

  • Choongik CHOI
    • Journal of Distribution Science
    • /
    • v.21 no.6
    • /
    • pp.31-38
    • /
    • 2023
  • Purpose: This paper investigates how companies respond to government regulations and disasters in a risk-managed society, and aims to initiate discussions on the future prospects and challenges. Specifically, it explores how companies can plan to respond to such disasters in the future, and stresses that the law should be to protect people's lives and ensure safety, rather than to punish companies. Research design, data and methodology: The study methodology is based on a review of existing literature, as well as trend analysis through big data analysis. The research analyzes the discourse in our society regarding the enactment of the Serious Accident Punishment Act. Results: This study supports that the Serious Accident Punishment Act should be implemented in a manner that does not impede corporate activities, but rather helps to ensure the safety of citizens' daily lives. The authors call for collaboration between communities, labor unions, and companies in achieving a cooperative governance system for a safer society. Conclusions: It highlights the importance of addressing disasters and government regulations in the context of a risk-managed society, and offers insights for both companies and policymakers on how to navigate these challenges. By prioritizing safety and cooperation, we can work towards building a safer and more resilient society

A Review on Urban Resilience Assessment Methods

  • Barjau, Jaime;Wong, Francis K.W.;Fang, Dongping
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.685-686
    • /
    • 2015
  • The world is currently undergoing an intense urbanization process. The percentage of urban dwellers has never been so high. In 2010, and for the first time, urban population surpassed the rural one, accounting for 51% of global population, and this trend will continue in the forthcoming years. This increment in concentration of population and supporting assets in cities, make their performance a critical issue for world population. Recent events such as Fukushima tsunami and the hurricane Katrina have shown how fragile built environments are and the unpredictability of occurrence and magnitude of the hazards. Such an expansion of the world's urban population, together with an increase in severity and number of hazards and catastrophes, has put under the spotlight the necessity to build cities not only sustainable, but resilient. Decision makers should acknowledge failure as an option, and the importance of developing city resilience. This paper will provide an initial review on urban resilience, definitions and assessment approaches as a first step for decision makers to account for resilience in their decision making process.

  • PDF