• Title/Summary/Keyword: resilient and sustainable

Search Result 61, Processing Time 0.026 seconds

Importance of food science and technology in sustainable and resilient food systems - a Northeast Asian perspective (지속가능한 식량체계를 위한 식품과학기술의 중요성 - 동북아시아의 관점)

  • Lee, Cherl-Ho
    • Food Science and Industry
    • /
    • v.54 no.3
    • /
    • pp.196-209
    • /
    • 2021
  • The origines of the Western roasting culture and East Asian boiling culture were studied and the importance of primitive pottery culture (8000-5000 BCE) in the Korea Strait coastal region was discussed. The primitive pottery culture probably initiated the Jjigae (stew) culture and the production of salt. It can be also postulated that fish fermentation, kimchi fermentation, and cereal alcohol fermentation originated during this period. Soybean culture emerged ca. 2,000 BCE in South Manchuria and the Korean Peninsula. This paper focuses on the role of Korean foodways in the food science and technology development for the sustainable and resilient food systems. We are facing a global food crisis caused by population growth, climate change, and high animal food consumption. Studies on the meat analog and cultured meat are the new trend in Food Science and Technology. The importance of the wisdom learned through the Northeast Asian traditional foods, for example, soybean curd (tofu) and meaty flavor production by fermentation for the research on the novel sustainable and resilient food systems are discussed.

RC model control subjected to earthquakes using piecewise Lyapunov criterion in ambient intelligence

  • ZY Chen;Ruei-Yuan Wang;Yahui Meng;Timothy Chen
    • Smart Structures and Systems
    • /
    • v.34 no.3
    • /
    • pp.171-179
    • /
    • 2024
  • This paper proposes a composite form of fuzzy modal control plan based on a piecewise Lyapunov criterion in ambient intelligence (AI). In some cases, these goals are of equal importance and cannot be easily prioritized. Environmental intelligence systems are being developed to handle multi-objective problems related to daily activities. This paper proposes a context-aware structure to provide strategies in an AI control system. Based on context data from sensors distributed throughout the environment, the modelled system recognizes the individual state, makes supporting decisions with no designation for control targets, and executes operations that is based on the environment feedbacks. To validate the developed model, an example using the system to deal with a practical engineering structural stability of analysis and control is described. The objectives of this paper are access to adequate, safe and affordable housing and basic services, promotion of inclusive and sustainable urbanization and participation, implementation of sustainable and disaster-resilient buildings, sustainable planning and management of human settlement. Therefore, the goal is believed to be achieved in the near future through the continuous development of AI and control theory for a better life from the environment and built systems.

Apply evolved grey-prediction scheme to structural building dynamic analysis

  • Z.Y. Chen;Yahui Meng;Ruei-Yuan Wang;Timothy Chen
    • Structural Engineering and Mechanics
    • /
    • v.90 no.1
    • /
    • pp.19-26
    • /
    • 2024
  • In recent years, an increasing number of experimental studies have shown that the practical application of mature active control systems requires consideration of robustness criteria in the design process, including the reduction of tracking errors, operational resistance to external disturbances, and measurement noise, as well as robustness and stability. Good uncertainty prediction is thus proposed to solve problems caused by poor parameter selection and to remove the effects of dynamic coupling between degrees of freedom (DOF) in nonlinear systems. To overcome the stability problem, this study develops an advanced adaptive predictive fuzzy controller, which not only solves the programming problem of determining system stability but also uses the law of linear matrix inequality (LMI) to modify the fuzzy problem. The following parameters are used to manipulate the fuzzy controller of the robotic system to improve its control performance. The simulations for system uncertainty in the controller design emphasized the use of acceleration feedback for practical reasons. The simulation results also show that the proposed H∞ controller has excellent performance and reliability, and the effectiveness of the LMI-based method is also recognized. Therefore, this dynamic control method is suitable for seismic protection of civil buildings. The objectives of this document are access to adequate, safe, and affordable housing and basic services, promotion of inclusive and sustainable urbanization, implementation of sustainable disaster-resilient construction, sustainable planning, and sustainable management of human settlements. Simulation results of linear and non-linear structures demonstrate the ability of this method to identify structures and their changes due to damage. Therefore, with the continuous development of artificial intelligence and fuzzy theory, it seems that this goal will be achieved in the near future.

Enhancing mechanical performance of steel-tube-encased HSC composite walls: Experimental investigation and analytical modeling

  • ZY Chen;Ruei-Yuan Wang;Yahui Meng;Huakun Wu;Lai B;Timothy Chen
    • Steel and Composite Structures
    • /
    • v.52 no.6
    • /
    • pp.647-656
    • /
    • 2024
  • This paper discusses the study of concrete composite walls of algorithmic modeling, in which steel tubes are embedded. The load-bearing capacity of STHC composite walls increases with the increase of axial load coefficient, but its ductility decreases. The load-bearing capacity can be improved by increasing the strength of the steel pipes; however, the elasticity of STHC composite walls was found to be slightly reduced. As the shear stress coefficient increases, the load-bearing capacity of STHC composite walls decreases significantly, while the deformation resistance increases. By analyzing actual cases, we demonstrate the effectiveness of the research results in real situations and enhance the persuasiveness of the conclusions. The research results can provide a basis for future research, inspire more explorations on seismic design and construction, and further advance the development of this field. Emphasize the importance of research results, promote interdisciplinary cooperation in the fields of structural engineering, earthquake engineering, and materials science, and improve overall seismic resistance. The emphasis on these aspects will help highlight the practical impact of the research results, further strengthen the conclusions, and promote progress in the design and construction of earthquake-resistant structures. The goals of this work are access to adequate, safe and affordable housing and basic services, promotion of inclusive and sustainable urbanization and participation, implementation of sustainable and disaster-resilient architecture, sustainable planning and management of human settlements. Simulation results of linear and nonlinear structures show that this method can detect structural parameters and their changes due to damage and unknown disturbances. Therefore, it is believed that with the further development of fuzzy neural network artificial intelligence theory, this goal will be achieved in the near future.

Modified analytical AI evolution of composite structures with algorithmic optimization of performance thresholds

  • ZY Chen;Yahui Meng;Huakun Wu;ZY Gu;Timothy Chen
    • Steel and Composite Structures
    • /
    • v.53 no.1
    • /
    • pp.103-114
    • /
    • 2024
  • This study proposes a new hybrid approach that utilizes post-earthquake survey data and numerical analysis results from an evolving finite element routing model to capture vulnerability processes. In order to achieve cost-effective evaluation and optimization, this study introduced an online data evolution data platform. The proposed method consists of four stages: 1) development of diagnostic sensitivity curve; 2) determination of probability distribution parameters of throughput threshold through optimization; 3) update of distribution parameters using smart evolution method; 4) derivation of updated diffusion parameters. Produce a blending curve. The analytical curves were initially obtained based on a finite element model used to represent a similar RC building with an estimated (previous) capacity height in the damaged area. The previous data are updated based on the estimated empirical failure probabilities from the post-earthquake survey data, and the mixed sensitivity curve is constructed using the update (subsequent) that best describes the empirical failure probabilities. The results show that the earthquake rupture estimate is close to the empirical rupture probability and corresponds very accurately to the real engineering online practical analysis. The objectives of this paper are to obtain adequate, safe and affordable housing and basic services, promote inclusive and sustainable urbanization and participation, implement sustainable and disaster-resilient buildings, sustainable human settlement planning and management. Therefore, with the continuous development of artificial intelligence and management strategy, this goal is expected to be achieved in the near future.

A Review on Urban Resilience Assessment Methods

  • Barjau, Jaime;Wong, Francis K.W.;Fang, Dongping
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.685-686
    • /
    • 2015
  • The world is currently undergoing an intense urbanization process. The percentage of urban dwellers has never been so high. In 2010, and for the first time, urban population surpassed the rural one, accounting for 51% of global population, and this trend will continue in the forthcoming years. This increment in concentration of population and supporting assets in cities, make their performance a critical issue for world population. Recent events such as Fukushima tsunami and the hurricane Katrina have shown how fragile built environments are and the unpredictability of occurrence and magnitude of the hazards. Such an expansion of the world's urban population, together with an increase in severity and number of hazards and catastrophes, has put under the spotlight the necessity to build cities not only sustainable, but resilient. Decision makers should acknowledge failure as an option, and the importance of developing city resilience. This paper will provide an initial review on urban resilience, definitions and assessment approaches as a first step for decision makers to account for resilience in their decision making process.

  • PDF

A novel hybrid control of M-TMD energy configuration for composite buildings

  • ZY Chen;Yahui Meng;Ruei-Yuan Wang;T. Chen
    • Steel and Composite Structures
    • /
    • v.48 no.4
    • /
    • pp.475-483
    • /
    • 2023
  • In this paper, a new energy-efficient semi-active hybrid bulk damper is developed that is cost-effective for use in structural applications. In this work, the possibility of active and semi-active component configurations combined with suitable control algorithms, especially vibration control methods, is explored. The equations of motion for a container bridge equipped with an MDOF Mass Tuned Damper (M-TMD) system are established, and the combination of excitation, adhesion, and control effects are performed by a proprietary package and commercial custom submodel software. Systematic methods for the synthesis of structural components and active systems have been used in many applications because of the main interest in designing efficient devices and high-performance structural systems. A rational strategy can be established by properly controlling the master injection frequency parameter. Simulation results show that the multiscale model approach is achieved and meets accuracy with high computational efficiency. The M-TMD system can significantly improve the overall response of constrained structures by modestly reducing the critical stress amplitude of the frame. This design can be believed to build affordable, safe, environmentally friendly, resilient, sustainable infrastructure and transportation.

Applications of Sugarcane by-products to mitigate climate change in Ethiopia

  • Habte, Lulit;Mulatu, Dure;Ahn, Ji Whan
    • Journal of Energy Engineering
    • /
    • v.27 no.3
    • /
    • pp.36-40
    • /
    • 2018
  • Climate change is one of the major issues in both the developed and developing world. Greenhouse gas (GHG) emission is one of the implications for climate change. It is increasing rapidly. Although the emission is much less when compared to the rest of the world, Ethiopia has also faced this global issue. The major source for GHG emission in Ethiopia is agriculture. Therefore, the agriculture sector has to be given more attention in Ethiopia. To overcome the problem, Climate-Resilient Green Economy (CRGE) strategy has been initiated. One way of executing this target is to create a sustainable and environmentally friendly pathway to use agricultural byproducts. Sugarcane is one of the major plants in Ethiopia. Its byproducts are bagasse, molasses, and press mud. Since it is a waste product, it is economical and creates a sustainable and green environment by reducing GHG emissions. Sugarcane byproducts have versatile applications like as fuel, as cement replacing material, as a mitigation for expansive soils, as biosorbent for the treatment of water and wastewater and also as a wood material. However, Ethiopia has not used this byproduct massively as it is readily available. This paper reviews the possible applications of sugarcane byproducts to mitigate climate change.

Emerging Technologies for Sustainable Smart City Network Security: Issues, Challenges, and Countermeasures

  • Jo, Jeong Hoon;Sharma, Pradip Kumar;Sicato, Jose Costa Sapalo;Park, Jong Hyuk
    • Journal of Information Processing Systems
    • /
    • v.15 no.4
    • /
    • pp.765-784
    • /
    • 2019
  • The smart city is one of the most promising, prominent, and challenging applications of the Internet of Things (IoT). Smart cities rely on everything connected to each other. This in turn depends heavily on technology. Technology literacy is essential to transform a city into a smart, connected, sustainable, and resilient city where information is not only available but can also be found. The smart city vision combines emerging technologies such as edge computing, blockchain, artificial intelligence, etc. to create a sustainable ecosystem by dramatically reducing latency, bandwidth usage, and power consumption of smart devices running various applications. In this research, we present a comprehensive survey of emerging technologies for a sustainable smart city network. We discuss the requirements and challenges for a sustainable network and the role of heterogeneous integrated technologies in providing smart city solutions. We also discuss different network architectures from a security perspective to create an ecosystem. Finally, we discuss the open issues and challenges of the smart city network and provide suitable recommendations to resolve them.