• Title/Summary/Keyword: residually locally nilpotent space

Search Result 2, Processing Time 0.014 seconds

A GENERALIZATION OF THE NILPOTENT SPACE AND ITS APPLICATION

  • Han, Sang-Eon
    • Bulletin of the Korean Mathematical Society
    • /
    • v.38 no.4
    • /
    • pp.787-795
    • /
    • 2001
  • For the generalized nilpotent spaces, e.g. the locally nilpotent space, the residually locally nilpotent space and the space satisfying the condition ($T^{*}$) or ($T^{**}$), we find the pullback property of them. Furthermore we investigate some fiber properties of the space satisfying the condition ($T^{*}$) or ($T^{**}$), especially locally nilpotent space.

  • PDF

ON THE S1-EULER CHARACTERISTIC OF THE SPACE WITH A CIRCLE ACTION ii

  • HAN, SNAG-EON
    • Honam Mathematical Journal
    • /
    • v.24 no.1
    • /
    • pp.93-101
    • /
    • 2002
  • The $S^1$-Eule characteristics of X is defined by $\bar{\chi}_{S^1}(X)\;{\in}\;HH_1(ZG)$, where G is the fundamental group of connected finite $S^1$-compact manifold or connected finite $S^1$-finite complex X and $HH_1$ is the first Hochsch ild homology group functor. The purpose of this paper is to find several cases which the $S^1$-Euler characteristic has a homotopic invariant.

  • PDF