• Title/Summary/Keyword: residual value

Search Result 930, Processing Time 0.023 seconds

A Study on the High Temperature Tensile Property and the Characteristics of Residual Stress in Welds of High Strength Steels (고강도강재의 고온인장특성 및 용접시 잔류응력특징에 관한 연구)

  • 장경호;이진형;신영의
    • Journal of Welding and Joining
    • /
    • v.22 no.4
    • /
    • pp.50-58
    • /
    • 2004
  • In this study, high temperature tensile properties of high strength steels(POSTEN60, POSTEN80) were investigated. The three-dimensional thermal elastic-plastic analyses were conducted to investigate the characteristics of welding residual stresses in welds of high strength steels on the basis of thermal and mechanical properites at high temperature obtained from the experiment. According to the results, high temperature tensile strength of POSTEN60 steel deteriorated slowly to 10$0^{\circ}C$. As the temperature went up, the tensile strength became better because of blue shortness, and it deteriorated radically after reaching to the maximum value around 30$0^{\circ}C$. For the POSTEN80 steel, high temperature tensile strength deteriorated slowly to 20$0^{\circ}C$. As the temperature went up the tensile strength became better and it deteriorated slowly to $600^{\circ}C$ after reached to the maximum value around 30$0^{\circ}C$. Strain of high strength steels at the elevated temperature increased radically after the mercury rose to $600^{\circ}C$. The strain hardening ratio of POSTEN60 steel was larger then that of POSTEN80 steel at the elevated temperature as in the case at the room temperature and it became smaller radically after the mercury rose to 40$0^{\circ}C$. And, in the welding of high strength steels, increasing tensile strength of the steel (POSTEN60

Nonlinear finite element analysis of ultra-high performance fiber reinforced concrete beams subjected to impact loads

  • Demirtas, Gamze;Caglar, Naci;Sumer, Yusuf
    • Structural Engineering and Mechanics
    • /
    • v.82 no.1
    • /
    • pp.81-92
    • /
    • 2022
  • Ultra-high performance fiber reinforced concrete (UHPFRC) is a composite building material with high ductility, fatigue resistance, fracture toughness, durability, and energy absorption capacity. The aim of this study is to develop a nonlinear finite element model that can simulate the response of the UHPFRC beam exposed to impact loads. A nonlinear finite element model was developed in ABAQUS to simulate the real response of UHPFRC beams. The numerical results showed that the model was highly successful to capture the experimental results of selected beams from the literature. A parametric study was carried out to investigate the effects of reinforcement ratio and impact velocity on the response of the UHPFRC beam in terms of midpoint displacement, impact load value, and residual load-carrying capacity. In the parametric study, the nonlinear analysis was performed in two steps for 12 different finite element models. In the first step, dynamic analysis was performed to monitor the response of the UHPFRC beam under impact loads. In the second step, static analysis was conducted to determine the residual load-carrying capacity of the beams. The parametric study has shown that the reinforcement ratio and the impact velocity affect maximum and residual displacement value substantially.

Predictive System Evaluation of Residual Stresses of Plate Butt Welding Using Neural Network (신경회로망을 이용한 평판 맞대기용접의 잔류응력 예측시스템 개발)

  • 차용훈;성백섭;이연신
    • Journal of Welding and Joining
    • /
    • v.21 no.1
    • /
    • pp.80-86
    • /
    • 2003
  • This study develops a system for effective prediction of residual stresses by the backpropagation algorithm using the neural network. To achieve this goal, a series of experiments were carried out to and measured the residual stresses using the sectional method. With the experimental results, the optional control algorithms using a neural network could be developed in order to reduce the effect of the external disturbances during GMA welding processes. Then the results obtained from this study were compared between the measured and calculated results, weld guality might be controlled by the neural network based on backpropagation algorithm.. This system can not only help to understand the interaction between the process parameters and residual stress, but also improve the quantity control for welded structures.

Prediction of Residual Stress in Straightening Process of SUS304 Wire (SUS304 와이어 직선화처리 공정 중 잔류응력 예측)

  • Kim, T.W.;Ham, S.H.;Moon, H.I.;Kim, H.Y.
    • Transactions of Materials Processing
    • /
    • v.16 no.6
    • /
    • pp.463-466
    • /
    • 2007
  • Micro-wire made from straightening process invents high added value and it has been adopted many industrial fields. Therefore, many research activities about straightening process are advanced actively. It is known that fine straightness of micro-wire can be obtained by removing residual stress induced during the manufacturing processes. Generally, residual stress is removed or minimized through several drawing processes with heat treatment. In this study, the residual stress at each straightening process is calculated and monitored by finite element analyses and the main reason of stress change is investigated.

Finite element modeling of rolled steel shapes subjected to weak axis bending

  • Saliba, Najib G.;Tawk, Issam;Gergess, Antoine N.
    • Steel and Composite Structures
    • /
    • v.29 no.2
    • /
    • pp.161-173
    • /
    • 2018
  • Point bending is often used for cambering and curving structural steel girders. An analytical solution, applicable in the elasto-plastic range only, that relates applied loads to the desired curve was recently developed for inducing horizontal curves using four-point bending. This solution does not account for initial residual stresses and geometric imperfections built-in hot-rolled sections. This paper presents results from a full-scale test on a hot-rolled steel section curved using four-point bending. In parallel, a numerical analysis, accounting for both initial geometric imperfections and initial residual stresses, was carried out. The models were validated against the experimental results and a good agreement for lateral offset and for strain in the elasto-plastic and post-plastic ranges was achieved. The results show that the effect of initial residual stresses on deformation and strain is minimal. Finally, residual stresses due to cold bending calculated from the numerical analysis were assessed and a revised stress value for the service load design of the curved girder is proposed.

Finite Element Analysis of Strain and Residual Stress in Weld Specimen (용접시편 변형률 및 잔류응력의 유한요소해석)

  • 양승용;구병춘;정흥채
    • Journal of the Korean Society for Railway
    • /
    • v.7 no.2
    • /
    • pp.85-92
    • /
    • 2004
  • This paper consists of two parts. One is finite element analysis of the redistribution of residual stresses of weld specimen by cutting. This work is necessary to predict the actual residual stress distribution of weld specimens used in fatigue test. The other subject is to calculate the relaxation of residual stress and the strain field induced by cyclic loading. To obtain fatigue life of weldment, the value of strain amplitude at each position is necessary, for example in the strain-life approach, and the numerical results can be used to verify experimental strain measurements. Thermo mechanical finite element analyses were conducted on the commercial package ABAQUS.

Fracture mechanics analysis of a crack in a weld of dissimilar steels using the J-ingegral (J-적분을 이용한 이종강재 용접접합부 균열의 파괴역학적 해석)

  • 이진형;장경호
    • Proceedings of the KWS Conference
    • /
    • 2004.05a
    • /
    • pp.264-266
    • /
    • 2004
  • for the kぉ mechanics analysis of a crack in a weld of dissimilar steels, residual stress analysis and fracture analysis must be performed simultaneously. The standard definition of the J-integral leads to a path dependent value in the presence of a residual stress field. And unlike cracks in homogeneous materials, a bimaterial interface crack always induces both opening and shearing modes of stress in the vicinity of the crack tip. Therefore, it is necessary to develope a path independent J-integral definition for a crack in a residual stress field generated by welding of dissimilar steels. This paper addresses the modification of the Rice-J-integral to produce a path independent J-integral when residual stresses due to welding of dissimilar steels and external forces are present. The residual stress problem is heated as an initial stain problem and the J-integral proposed for this class of problems is used And a program which can evaluate the 1-integral for a crack in a weld of dissimialr steels is developed using proposed J-integral definition.

  • PDF

A Study on the Prediction of Welding Residual Stresses and the Selection of Optimal Welding Condition using Neural Network (신경회로망을 이용한 용접잔류응력 예측 및 최적의 용접조건 선정에 관한 연구)

  • 차용훈;이연신;성백섭
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.4
    • /
    • pp.58-64
    • /
    • 2001
  • In this study, it is developed that the system for effective prediction of residual stresses by the back-propagation algorithm using the neural network. To achieve This goal, the series experiment were carried out and measured the residual stresses using the sectional method. Using the experimental results, the optional control algorithms using a neural network should be developed in order to reduce the effect of the external disturbances during GMA welding processes. Then the results obtained from this study were compared between the measured and calculated results, weld guality might be controlled by the neural network based on backpropagation algorithm. This system can no only help to understand the interaction between the process parameters and residual stress, but also improve the quantity control for welded structures.

  • PDF

A Study on the Influece of Residual Stresses on Fatigue Crack Growth Behaviors in the Weldment Plate with Various Thickness (변후 용접판재에서의 피로균열성장거동에 미치는 잔류응력의 영향에 관한 파괴역학적 연구)

  • 차용훈
    • Journal of the Korean Society of Safety
    • /
    • v.8 no.1
    • /
    • pp.71-79
    • /
    • 1993
  • The welding implementation used widely in the industrial field is gradually increasing due to weight reduction. unlimited material thickness. simplified structure design. and 1 manufacturing time and cost reduction. The most significant factor that influences the fatigue crack growth rate is the residual stress generated during the welding process. Many researchers have studied the effect of the residual stress on crack growth behavior. Through a fatigue test in a various-thickness welded specimen. redistributed residual stress is measured as the crack is developed. Then. by superposing the measured residual stress on the K value obtained by the finite element method.

  • PDF

Estimation of Residual Stresses in Micromachined Films (마이크로머시닝 기술에 의해 형성된 막에 있어서의 잔류응력 추정)

  • Min, Yeong-Hun;Kim, Yong-Gwon
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.6
    • /
    • pp.354-359
    • /
    • 2000
  • A new method of measuring residual stress in micromachined film is proposed. An estimation of residual stress is performed by using least squares fit with an appropriate deflection modeling. an exact value of residual stress is obtained without any of the ambiguities that exist in conventional buckling method, and a good approximation is also obtained by using a few data points. Therefore, the test structures area could be greatly decreased by using this method. The measurement can be done more easily and simply without any actuation or any specific measuring equipment. The structure and fabrication processes described in this paper are simple and widely used in surface micromachining. In addition, in-situ measurement is available by using the proposed method when the test structure and the measurement structure are fabricated on a wafer simultaneously.

  • PDF