• Title/Summary/Keyword: residual value

Search Result 930, Processing Time 0.03 seconds

Diagnosis of Residual Tumors after Unplanned Excision of Soft-Tissue Sarcomas: Conventional MRI Features and Added Value of Diffusion-Weighted Imaging

  • Jin, Kiok;Lee, Min Hee;Yoon, Min A;Kim, Hwa Jung;Kim, Wanlim;Chee, Choong Geun;Chung, Hye Won;Lee, Sang Hoon;Shin, Myung Jin
    • Investigative Magnetic Resonance Imaging
    • /
    • v.26 no.1
    • /
    • pp.20-31
    • /
    • 2022
  • Purpose: To assess conventional MRI features associated with residual soft-tissue sarcomas following unplanned excision (UPE), and to compare the diagnostic performance of conventional MRI only with that of MRI including diffusion-weighted imaging (DWI) for residual tumors after UPE. Materials and Methods: We included 103 consecutive patients who had received UPE of a soft-tissue sarcoma with wide excision of the tumor bed between December 2013 and December 2019 and who also underwent conventional MRI and DWI in this retrospective study. The presence of focal enhancement, soft-tissue edema, fascial enhancement, fluid collections, and hematoma on MRI including DWI was reviewed by two musculoskeletal radiologists. We used classification and regression tree (CART) analysis to identify the most significant MRI features. We compared the diagnostic performances of conventional MRI and added DWI using the McNemar test. Results: Residual tumors were present in 69 (66.9%) of 103 patients, whereas no tumors were found in 34 (33.1%) patients. CART showed focal enhancement to be the most significant predictor of residual tumors and correctly predicted residual tumors in 81.6% (84/103) and 78.6% (81/103) of patients for Reader 1 and Reader 2, respectively. Compared with conventional MRI only, the addition of DWI for Reader 1 improved specificity (32.8% vs. 56%, 33.3% vs. 63.0%, P < 0.05), decreased sensitivity (96.8% vs. 84.1%, 98.7% vs. 76.7%, P < 0.05), without a difference in diagnostic accuracy (76.7% vs. 74.8%, 72.9% vs. 71.4%) in total and in subgroups. For Reader 2, diagnostic performance was not significantly different between the sets of MRI (P > 0.05). Conclusion: After UPE of a soft-tissue sarcoma, the presence or absence of a focal enhancement was the most significant MRI finding predicting residual tumors. MRI provided good diagnostic accuracy for detecting residual tumors, and the addition of DWI to conventional MRI may increase specificity.

A Study on Valuation of Environmental-friendly and Organic Food Company (친환경 유기농 기업의 가치평가에 관한 연구)

  • Yeo, Dong-Su;Hwang, Jae-Hyun
    • Korean Journal of Organic Agriculture
    • /
    • v.20 no.4
    • /
    • pp.543-561
    • /
    • 2012
  • This work is for reasonable valuation method of environmental-friendly and organic company. Reasonable valuation method is principal for the sound development, the reasonable investment and the growth of stock market. This study proposes valid valuation and method for environmental-friendly and organic company. The author selected 4 companies from certificate list of environmental-friendly and organic food and LOHAS (Lifestyles Of Health And Sustainability) food of Korean standards association. Applying financial audit report of 5 years, the author output 5 variables from each companies by using Growth Option model of Real Option model. And the author valuated companies by adding option value calculated with these variables and residual value discounted with cash flow discounted method. Company values from ROV model were 1.71 time higher than DCF model. This results show that the value of environmental-friendly and organic food company may own high option premium, that is the growth factor.

Fatigue Behavior of Alumina Ceramics under the Repeated Dynamic Loading (반복 동적하중에 의한 알루미나 세라믹스의 피로거동)

  • 이규형;박성은;이홍림
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.8
    • /
    • pp.850-856
    • /
    • 1998
  • The dynaamic fatigue behavior of alumina ceramics was observed at room temperature using four-point bending method. Dynamic fatigue fracture strength was observed as function of down speed and notch length. The crack growth exponent of the specimens was calculated from the fracture strength and lifetime in dynamic fatigue test. After loading the stresses in the range of 0% to 105% compared with the average in-ert strength the value of residual fracture strength was measured for unnotched and 0.5mm notched speci-mens at the 0.001 and 0.0005 mm/min down speed respectively. After the 95% stress of the average inert strength was applied repeatedly the value of rsidual fracture strength was measured for 0.5mm notched specimens at the 0.001 and 0.0005 mm/min down speed respectively. The material constant A was found to be almost the same and not to depend on the loading mode or the down speed for unnotched and notched specimen. The value of fracture strength with time calculated from the constants n and A was in good agreement with the measured value.

  • PDF

Influences of Particle Property and Its Size Impact Damage and Strength Degradation in Silicon Carbide Ceramics (탄화규소 세라믹의 충격손상 및 강도저하에 미치는 입자의 재질 및 크기의 영향)

  • 신형섭;전천일랑;서창민
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.10
    • /
    • pp.1869-1876
    • /
    • 1992
  • The effect of particle property on FOD(foreign object damage) and strength degradation in structural ceramics especially, silicon carbide was investigated by accelerating a spherical particle having different material and different size. The damage induced showed significant differences in their patterns with increase of impact velocity. Also percussion cone was formed at the back part of specimen when particle size became large and its impact velocity exceeded a critical value. The extent of ring cracks was linearly related to particle size, however the impact of steel particle produced larger ring cracks than that of SiC particle. Increasing impact velocity the residual strength showed different degradation behaviors according to particle and its size. In the region the impact site represents nearly elastic deformation behavior, the residual strength was dependent upon the depth of cone crack regardless of particle size. However in elastic- plastic deformation region, the radial cracks led to rapid drop in residual strength.

Fatigue behavior of stud shear connectors in steel and recycled tyre rubber-filled concrete composite beams

  • Han, Qing-Hua;Wang, Yi-Hong;Xu, Jie;Xing, Ying
    • Steel and Composite Structures
    • /
    • v.22 no.2
    • /
    • pp.353-368
    • /
    • 2016
  • This paper extends our recent work on the fatigue behavior of stud shear connectors in steel and recycled tyre rubber-filled concrete (RRFC) composite beams. A series of 16 fatigue push-out tests were conducted using a hydraulic servo testing machine. Three different recycled tyre rubber contents of concrete, 0%, 5% and 10%, were adopted as main variable parameters. Stress amplitudes and the diameters of studs were also taken into consideration in the tests. The results show that the fatigue lives of studs in 5% and 10% RRFC were 1.6 and 2.0 times greater of those in normal concrete, respectively. At the same time, the ultimate residual slips' values of stud increased in RRFC to highlight its better ductility. The average ultimate residual slip value of the studs was found to be equal to a quarter of studs' diameter. It had also been proved that stress amplitude was inversely proportional to the fatigue life of studs. Moreover, the fatigue lives of studs with large diameter were slightly shorter than those of smaller ones and using larger ones had the risk of tearing off the base metal. Finally, the comparison between test results and three national codes was discussed.

Finite Element Analysis on the Improvement of Residual Deformation of the Part After Pulse Laser Welding of Circular Cover (원형 커버의 펄스 레이저 용접 후 부품 잔류변형 개선에 관한 유한요소해석)

  • Kim, Kwan-Woo;Cho, Hae-Yong
    • Journal of Welding and Joining
    • /
    • v.33 no.6
    • /
    • pp.60-66
    • /
    • 2015
  • Molten zone shape of pulse laser welding is affected by welding conditions such as beam power, beam speed, irradiation time, pulse frequency, etc. and is divided into conduction type and keyhole type. It is necessary to design heat source model for irradiation of laser beam in the pulse laser welding. Shape variables and the maximum energy density value of the heat source model are different depending on the molten zone shape. In this paper, pulse laser welding simulation for joining of cylindrical part and circular cover was carried out. The heat source model for pulse laser beam with circular path was applied to the heat input boundary condition, radiative and conductive heat transfer were considered for the thermal boundary condition. For each phase, thermal and mechanical properties according to temperature were also applied to analysis. Analytical results were in good agreement with the molten zone size of specimen under the same welding conditions. So, the reliability of the welding simulation was verified. Finally, the improvements for reducing residual deformation after cover welding could be reviewed analytically.

Finite element analysis of slender HSS columns strengthened with high modulus composites

  • Shaat, Amr;Fam, Amir
    • Steel and Composite Structures
    • /
    • v.7 no.1
    • /
    • pp.19-34
    • /
    • 2007
  • This paper presents results of a non-linear finite element analysis of axially loaded slender hollow structural section (HSS) columns, strengthened using high modulus carbon-fiber reinforced polymer (CFRP) longitudinal sheets. The model was developed and verified against both experimental and other analytical models. Both geometric and material nonlinearities, which are attributed to the column's initial imperfection and plasticity of steel, respectively, are accounted for. Residual stresses have also been modeled. The axial strength in the experimental study was found to be highly dependent on the column's imperfection. Consequently, no specific correlation was established experimentally between strength gain and amount of CFRP. The model predicted the ultimate loads and failure modes quite reasonably and was used to isolate the effects of CFRP strengthening from the columns' imperfections. It was then used in a parametric study to examine columns of different slenderness ratios, imperfections, number of CFRP layers, and level of residual stresses. The study demonstrated the effectiveness of high modulus CFRP in increasing stiffness and strength of slender columns. While the columns' imperfections affect their actual strengths before and after strengthening,the percentage gain in strength is highly dependent on slenderness ratio and CFRP reinforcement ratio, rather than the value of imperfection.

A Model of the Risk Response Repeat Process in the Construction Project (건설공사 위험대응 반복 프로세스 모델)

  • Kim Seon-Gyoo
    • Korean Journal of Construction Engineering and Management
    • /
    • v.3 no.1 s.9
    • /
    • pp.107-114
    • /
    • 2002
  • Recently, a few major construction companies in Korea have a growing interests to the risk management system, and they are trying to apply it to their construction projects. However, the existing methodologies to be applied to the foreign public projects are not proper to the construction environments due to its adaptabilities, that has one time process and heavily depends on personal judgement. The purpose of this paper is to propose a risk response process in consideration of the residual risks, which would be more adaptable and practical in the construction environment, overcoming the current obstacles to be mentioned above. This process has systematic repeat process until the residual risks go down to the risk thresholds based on the efficiency of specific response strategy.

Fatigue Crack Propagation Characteristics of Duplex-Stainless Steel Weldments (II) -Crack Propagation on Near-Threshold Region- (2상계 스테인리스강 용접부의 피로크랙 전파특성 (II) -하한계치 근접에서의 전파특성-)

  • 권종완;김상대;이택순
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.1
    • /
    • pp.115-124
    • /
    • 1989
  • Near-threshold fatigue crack-growth behavior at room temperature for a duplex stainless steel weldments was investigated to evaluate the effect of load ratio, microstructural change, and residual stresses. Near-threshold fatigue crack propagation behavior is found to show a marked sensitivity to .alpha./.gamma. phase ratio, and little residual stress effects. Threshold values in the heat affected zones are higher than those of base metals and threshold values for crack growth decrease with increasing the load ratio in the base metals and weldments. The fractrographic features in base metals, weldments and heat affectred zones were discussed in terms mechanism of crack growth.

Fatigue Strength Improvement of Pressure Vessel Steel by Lasler Beam Radiation (레이저빔 조사에 의한 압력용기용 강의 피로강도 향상방법 개발)

  • 권재도;진영준;김상태;최선호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.2
    • /
    • pp.519-528
    • /
    • 1994
  • Degradation problem due to long term service in machine or structure is now one of important problems in whole industrial field. In this study, pressure vessel steel, Cr-Mo steel, which was used more than 60,000 hours, was surface-modified by laser beam radiation for the improvement of fatigue strength. To find out optimum radiation condition, hardness, residual stress measurement and fatigue tests were carried out with the specimen of different radiation conditions. Experimental results show that micro-hardness values on the surface of the radiated specimens were approximately 2.2 times higher than those of un-radiated ones. In the depth direction of the specimen, hardness on the surface showed maximum value and was decreased at the inside the specimen. Different hardness values are due to the energy density Q which was absorbed by the specimen. Fatigue tests show that fatigue life was improved by the compressive residual stress after laser beam radiation. However, some specimens with differednt conditions show the shorter fatigue life. It means that laser beam radiation with optimum parameter can improve thae fatigue strength.