• Title/Summary/Keyword: residual value

Search Result 930, Processing Time 0.032 seconds

Material Properties of Ni-P-B Electrodeposits for Steam Generator Tube Repair

  • Kim, Dong Jin;Seo, Moo Hong;Kim, Joung Soo
    • Corrosion Science and Technology
    • /
    • v.3 no.3
    • /
    • pp.112-117
    • /
    • 2004
  • This work investigated the material properties of Ni-P-B alloy electrodeposits obtained from a Ni sulfamate bath as a function of the contents of the P and B sources($H_3PO_3$ and dimethyl amine borane complex(DMAB), respectively) with/without additives. Chemical composition, residual stress, microstructure and micro hardness were investigated using ICP(inductively coupled plasma) mass spectrometer, flexible strip, XRD, TEM and micro Vickers hardness tester, respectively. From the results of the compositional analysis, it was observed that P and B are incorporated competitively during the electrodeposition and the sulfur from the additive is codeposited into the electrodeposit. The measured residual stress value increased in the order of Ni, Ni-P, Ni-B and Ni-P-B electrodeposits indicating that boron affects the residual tensile stress greater than phosphorus. As the contents of the alloying element sources of P and B increased, crystallinity and the grain size of the electrodeposit decreased. The effect of boron on crystallinity and grain size was also relatively larger than the phosphorus. It can be explained that the boron with a smaller atomic radius contributes to the increase of residual stress in the tensile direction and the larger restraining force against the grain growth more significantly than the phosphorus with a larger atomic radius. Introduction of an additive into the bath retarded crystallization and grain growth, which may be attributed to the change of the grain growth kinetics induced by the additive adsorbed on the substrate and electrodeposit surfaces during electrodeposition.

Performance Analysis of Hint-KD Training Approach for the Teacher-Student Framework Using Deep Residual Networks (딥 residual network를 이용한 선생-학생 프레임워크에서 힌트-KD 학습 성능 분석)

  • Bae, Ji-Hoon;Yim, Junho;Yu, Jaehak;Kim, Kwihoon;Kim, Junmo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.5
    • /
    • pp.35-41
    • /
    • 2017
  • In this paper, we analyze the performance of the recently introduced Hint-knowledge distillation (KD) training approach based on the teacher-student framework for knowledge distillation and knowledge transfer. As a deep neural network (DNN) considered in this paper, the deep residual network (ResNet), which is currently regarded as the latest DNN, is used for the teacher-student framework. Therefore, when implementing the Hint-KD training, we investigate the impact on the weight of KD information based on the soften factor in terms of classification accuracy using the widely used open deep learning frameworks, Caffe. As a results, it can be seen that the recognition accuracy of the student model is improved when the fixed value of the KD information is maintained rather than the gradual decrease of the KD information during training.

Residual Stress Behavior of High Temperature Polyimide Thin Films depending on the Structural Isomers of Diamine (Diamine의 구조적 이성질체에 따른 내열성 폴리이미드 박막의 잔류응력거동)

  • 임창호;정현수;한학수
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.6 no.2
    • /
    • pp.23-30
    • /
    • 1999
  • The relationships between morphological structures and residual stress behaviors of polyimide thin films depending on isomeric diamines were investigated. For this study, Poly(phenylene biphenyltetracarboximide) (BPDA-PDA) and poly(oxydiphenylene biphenyltetracarboximide) (BPDA-ODA) films were prepared from their isomeric diamines: 1,3-phenylene diamine (1,3-PDA) 1,4-phenylene diamine (1.4-PDA), 3,4'-oxydiphenylene diamine (3,4'-ODA), and 4,4'-oxydiphenylene diamine (4,4'-ODA), respectively. For those films, residual stresses were detected in-situ during thermal imidization of the isomeric polyimide as a function of processing temperature over the range of 25~$400^{\circ}C$ using. Thin Film Stress Analyzer (TFSA). In comparison, residual stress of BPDA-1.4PDA having better in-plain orientation and chain order was the lowest value of 7MPa whereas those of BPDA-1,3-PDA, BPDA-3,4'-ODA, and BPDA-4,4'-ODA were in the range of 40-50MPa. Conclusively, the effect of morphological nature (chain rigidity, chain order, orientation) and chain mobility relating to the g1ass transition behavior on the residual stress of isomeric polyimide thin films wart analyzed.

  • PDF

Reliability Improvement of Offshore Structural Steel F690 Using Surface Crack Nondamaging Technology

  • Lee, Weon-Gu;Gu, Kyoung-Hee;Kim, Cheol-Su;Nam, Ki-Woo
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.5
    • /
    • pp.327-335
    • /
    • 2021
  • Microcracks can rapidly grow and develop in high-strength steels used in offshore structures. It is important to render these microcracks harmless to ensure the safety and reliability of offshore structures. Here, the dependence of the aspect ratio (As) of the maximum depth of harmless crack (ahlm) was evaluated under three different conditions considering the threshold stress intensity factor (Δkth) and residual stress of offshore structural steel F690. The threshold stress intensity factor and fatigue limit of fatigue crack propagation, dependent on crack dimensions, were evaluated using Ando's equation, which considers the plastic behavior of fatigue and the stress ratio. ahlm by peening was analyzed using the relationship between Δkth obtained by Ando's equation and Δkth obtained by the sum of applied stress and residual stress. The plate specimen had a width 2W = 12 mm and thickness t = 20 mm, and four value of As were considered: 1.0, 0.6, 0.3, and 0.1. The ahlm was larger as the compressive residual stress distribution increased. Additionally, an increase in the values of As and Δkth(l) led to a larger ahlm. With a safety factor (N) of 2.0, the long-term safety and reliability of structures constructed using F690 can be secured with needle peening. It is necessary to apply a more sensitive non-destructive inspection technique as a non-destructive inspection method for crack detection could not be used to observe fatigue cracks that reduced the fatigue limit of smooth specimens by 50% in the three types of residual stresses considered. The usefulness of non-destructive inspection and non-damaging techniques was reviewed based on the relationship between ahlm, aNDI (minimum crack depth detectable in non-destructive inspection), acr N (crack depth that reduces the fatigue limit to 1/N), and As.

Study on the Chlorine-Resistant Bacteria Isolated from Water Pipe Network (상수도관망에서 분리한 잔류염소 내성균에 관한 연구)

  • Hyun, Jae-Yeoul;Yoon, Jong-Ho
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.3
    • /
    • pp.334-341
    • /
    • 2011
  • The free residual chlorine of tap water samples, collected from 266 faucets on the water pipe network in Daegu City, was between 0.1 and 0.79 mg/L. On microorganic tests, general bacteria and the coliform goup were not detected and thus the tap water was turned out to be fit to drink. In particular, samples of which free residual chlorine was 0.1 mg/L and over were cultured in R2A agar media at $25^{\circ}C$ for 7 days, and as a result heterotrophic bacteria were detected in 65.9% of samples; (1). The closer tap water got to the faucet from the stilling basin, the lower residual chlorine concentration became but the more the bacterial count became. And, more bacteria were detected in the R2A agar medium than in the PCA medium. (2). In the case of separated strains, most colonies were reddish or yellowish. 16S rRNA sequence was identified as Methylobacterium sp. and Williamsia sp., and yellow strain was identified as Sphingomonas sp., Sphingobium sp., Novosphingobium sp., Blastomonas sp., Rhodococcus sp. and Microbacterium sp. White strain was identified as Staphylococcus sp. (3). Sterilized tap water in polyethylene bottles was inoculated with separated strain and was left as it was for 2 months. As a result, bio-film was observed in tap water inoculated with Methylobacterium sp. and Sphingomonas sp. It was found that heterotrophic bacteria increased when free residual chlorine was removed from tap water in the water pipe network. Thus, there is a need to determine a base value for heterotrophic bacteria in order to check the cleanliness of tap water in the water pipe network.

Residual capacity assessment of in-service concrete box-girder bridges considering traffic growth and structural deterioration

  • Yuanyuan Liu;Junyong Zhou;Jianxu Su;Junping Zhang
    • Structural Engineering and Mechanics
    • /
    • v.85 no.4
    • /
    • pp.531-543
    • /
    • 2023
  • The existing concrete bridges are time-varying working systems, where the maintenance strategy should be planned according to the time-varying performance of the bridge. This work proposes a time-dependent residual capacity assessment procedure, which considers the non-stationary bridge load effects under growing traffic and non-stationary structural deterioration owing to material degradations. Lifetime bridge load effects under traffic growth are predicated by the non-stationary peaks-over-threshold (POT) method using time-dependent generalized Pareto distribution (GPD) models. The non-stationary structural resistance owing to material degradation is modeled by incorporating the Gamma deterioration process and field inspection data. A three-span continuous box-girder bridge is illustrated as an example to demonstrate the application of the proposed procedure, and the time-varying reliability indexes of the bridge girder are calculated. The accuracy of the proposed non-stationary POT method is verified through numerical examples, where the shape parameter of the time-varying GPD model is constant but the threshold and scale parameters are polynomial functions increasing with time. The case study illustrates that the residual flexural capacities show a degradation trend from a slow decrease to an accelerated decrease under traffic growth and material degradation. The reliability index for the mid-span cross-section reduces from 4.91 to 4.55 after being in service for 100 years, and the value is from 4.96 to 4.75 for the mid-support cross-section. The studied bridge shows no safety risk under traffic growth and structural deterioration owing to its high design safety reserve. However, applying the proposed numerical approach to analyze the degradation of residual bearing capacity for bridge structures with low safety reserves is of great significance for management and maintenance.

Downscaling Forgery Detection using Pixel Value's Gradients of Digital Image (디지털 영상 픽셀값의 경사도를 이용한 Downscaling Forgery 검출)

  • RHEE, Kang Hyeon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.2
    • /
    • pp.47-52
    • /
    • 2016
  • The used digital images in the smart device and small displayer has been a downscaled image. In this paper, the detection of the downscaling image forgery is proposed using the feature vector according to the pixel value's gradients. In the proposed algorithm, AR (Autoregressive) coefficients are computed from pixel value's gradients of the image. These coefficients as the feature vectors are used in the learning of a SVM (Support Vector Machine) classification for the downscaling image forgery detector. On the performance of the proposed algorithm, it is excellent at the downscaling 90% image forgery compare to MFR (Median Filter Residual) scheme that had the same 10-Dim. feature vectors and 686-Dim. SPAM (Subtractive Pixel Adjacency Matrix) scheme. In averaging filtering ($3{\times}3$) and median filtering ($3{\times}3$) images, it has a higher detection ratio. Especially, the measured performances of all items in averaging and median filtering ($3{\times}3$), AUC (Area Under Curve) by the sensitivity and 1-specificity is approached to 1. Thus, it is confirmed that the grade evaluation of the proposed algorithm is 'Excellent (A)'.

Removal of residual ozone in drinking water treatment using hydrogen peroxide and sodium thiosulfate (과산화수소와 티오황산나트륨을 이용한 정수처리공정에서의 잔류오존 제거)

  • Kwon, Minhwan;Kim, Seohee;Ahn, Yongtae;Jung, Youmi;Joe, Woo-Hyun;Lee, Kyunghyuk;Kang, Joon-Wun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.29 no.4
    • /
    • pp.481-491
    • /
    • 2015
  • The aim of this study was to evaluate the chemical quenching system for residual ozone and to determine the operating condition for the quenching system. Hydrogen peroxide ($H_2O_2$) and sodium thiosulfate ($Na_2S_2O_3$) were investigated as quenching reagents for ozone removal, and the tendency of each chemical was notably different. In the case of $H_2O_2$, the degradation rate of ozone was increased as the concentration of $H_2O_2$ increase, and temperature and pH value have a significant effect on the degradation rate of ozone. On the other hand, the degradation rate of ozone was not affected by the concentration of $Na_2S_2O_3$, temperature and pH value, due to the high reactivity between the ${S_2O_3}^{2-}$ and ozone. This study evaluates the decomposition mechanism of ozone by $H_2O_2$ and $Na_2S_2O_3$ with consideration for the water quality and reaction time. Furthermore, the removal test for the quenching reagents, which can be remained after reaction with ozone, was conducted by GAC process.

Investigation of S-wave Velocity Based on SPS Field Tests (부유형 PS(SPS) 속도검층을 통한 전단파 특성 고찰)

  • Jeong, Nam-Hoon;Lee, Chong-Kyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.10
    • /
    • pp.161-174
    • /
    • 2008
  • To investigate the characteristics of the shear wave velocity of cohesive soils and residual soils in Korea, Standard Penetration Test (SPT), Suspension PS Logging tests (SPS) and other soil tests were performed to analyze the shear wave velocity at each layer For these purposes, 2 study sites are selected: one is cohesive soils and the other is residual soils. As a results, new empirical formulas are proposed from the relationship between strength of the ground (N value) and shear wave velocity from the test data at each layer. In the case of cohesive soils, the proposed relationships are nearly similar to empirical formulas, however, in the case of residual soils there was a little difference between the empirical formulas and measured velocities in this study. Case examples for shear wave velocites are presented with depth, N-values and compared with Ohta et al. (1978) empirical formula.

Energy-efficient intrusion detection system for secure acoustic communication in under water sensor networks

  • N. Nithiyanandam;C. Mahesh;S.P. Raja;S. Jeyapriyanga;T. Selva Banu Priya
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.6
    • /
    • pp.1706-1727
    • /
    • 2023
  • Under Water Sensor Networks (UWSN) has gained attraction among various communities for its potential applications like acoustic monitoring, 3D mapping, tsunami detection, oil spill monitoring, and target tracking. Unlike terrestrial sensor networks, it performs an acoustic mode of communication to carry out collaborative tasks. Typically, surface sink nodes are deployed for aggregating acoustic phenomena collected from the underwater sensors through the multi-hop path. In this context, UWSN is constrained by factors such as lower bandwidth, high propagation delay, and limited battery power. Also, the vulnerabilities to compromise the aquatic environment are in growing numbers. The paper proposes an Energy-Efficient standalone Intrusion Detection System (EEIDS) to entail the acoustic environment against malicious attacks and improve the network lifetime. In EEIDS, attributes such as node ID, residual energy, and depth value are verified for forwarding the data packets in a secured path and stabilizing the nodes' energy levels. Initially, for each node, three agents are modeled to perform the assigned responsibilities. For instance, ID agent verifies the node's authentication of the node, EN agent checks for the residual energy of the node, and D agent substantiates the depth value of each node. Next, the classification of normal and malevolent nodes is performed by determining the score for each node. Furthermore, the proposed system utilizes the sheep-flock heredity algorithm to validate the input attributes using the optimized probability values stored in the training dataset. This assists in finding out the best-fit motes in the UWSN. Significantly, the proposed system detects and isolates the malicious nodes with tampered credentials and nodes with lower residual energy in minimal time. The parameters such as the time taken for malicious node detection, network lifetime, energy consumption, and delivery ratio are investigated using simulation tools. Comparison results show that the proposed EEIDS outperforms the existing acoustic security systems.