• Title/Summary/Keyword: residual time

Search Result 2,098, Processing Time 0.028 seconds

Determination of Parameters for the Clark Model based on Observed Hydrological Data (실측수문자료에 의한 Clark 모형의 매개변수 결정)

  • Ahn, Tae Jin;Jeon, Hyun Chul;Kim, Min Hyeok
    • Journal of Wetlands Research
    • /
    • v.18 no.2
    • /
    • pp.121-131
    • /
    • 2016
  • The determination of feasible design flood is the most important to control flood damage in river management. Concentration time and storage constant in the Clark unit hydrograph method mainly affects magnitude of peak flood and shape of hydrograph. Model parameters should be calibrated using observed discharge but due to deficiency of observed data the parameters have been adopted by empirical formula. This study is to suggest concentration time and storage constant based on the observed rainfall-runoff data at GongDo stage station in the Ansung river basin. To do this, five criteria have been suggested to compute root mean square error(RMSE) and residual of oserved value and computed one. Once concentration time and storage constant have been determined from three rainfall-runoff event selected at the station, the five criteria based on observed hydrograph and computed hydrograph by the Clark model have been computed to determine the value of concentration time and storage constant. A criteria has been proposed to determine concentration time and storage constant based on the results of the observed hydrograph and the Clark model. It has also been shown that an exponent value of concentration time-cumulative area curve should be determined based on the shape of watershed.

A Study on the Life Time of RCD in Coastal Area (해안지역에서의 저압용 누전차단기 교체주기 연구)

  • Kim, Chong-Min;Choi, Myeong-Il;Shong, Kil-Mok;Seo, Jung-Youl;Shin, Jin-Yong;Kim, Chang-Hwan
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.1
    • /
    • pp.85-92
    • /
    • 2011
  • The role of RCDs(Residual Current Protective Device) that are installed before the load is very important for preventing electric shock and electrical fire. However, although fault rate of RCD is increasing due to deterioration and long period usage, the RCD is permanently used without a checking of performance evaluation and it causes the electrical accident. In this paper, the amount of airborne chloride is researched in domestic costal area and the accelerated life test is conducted using a salt water spray tester in order to decide the life time of RCD. Aa a result of an accelerated life test, the MTTF(Mean Time To Failure) of RCD is 110.81 hours and B10 life time of RCD is 45.81 hours for the all samples. when an accelerated life test result is applied to within 2 km costal area, the life time of RCD is predicted about 5 years.

Transfer Alignment with Adaptive Filter Estimating Time Delay (시간지연 추정 적응필터 적용 전달정렬 기법)

  • Park, Chan-Ju;Yu, Myeong-Jong;Lee, Sang-Jeong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.11
    • /
    • pp.1079-1086
    • /
    • 2008
  • During transfer alignment navigation information transferred MINS(master inertial navigation system) to SINS(slave inertial navigation system) has a changed time delay. The changed time delay degrades the performance of transfer alignment. This paper proposes an adaptive filter that estimates covariance of a time delay in real-time using residual of measurements. The performance of the adaptive filter is compared with that of the EKF(extended Kalman filter) in case of transfer alignment for vertical launcher in the ship. The results show that proposed method is more effective than EKF in estimating attitude errors.

Investigation on surface hardening and corrosion characteristic by water cavitation peening with time for Al 5052-O alloy (5052-O 알루미늄 합금의 워터 캐비테이션 피닝 시간에 따른 표면 경화와 부식 특성에 관한 연구)

  • Kim, Seong-Jong;Hyun, Koang-Yong
    • Corrosion Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.151-156
    • /
    • 2012
  • The cavity formed by the ultrasonic generation in the fluid with the application of water cavitation peening collides into the metal surface. At this time, the surface modification effect such as the work hardening presents by the compressive residual stress formed due to the localized plastic deformation. In this investigation, the water cavitation peening technology in the distilled water with the lapse of time was applied to 5052-O aluminum alloy for aluminum ship of a high value. So, the optimum water cavitation peening time on the effect for surface hardening and anti-corrosion property was investigated. Consequently, the water cavitatin peening time on excellent hardness and corrosion resistance characteristic presented 3.5 min. and 5.0 min, respectively. The surface hardness in the optimum water cavitation peening time was improved approximately 45% compared to the non-WCPed condition. In addition, corrosion current density was decreased.

Simulation of Surface Coverage Made by Impeller Type Shot-peening Machines (임펠러식 쇼트피닝 머신에 의한 표면 커버리지 시뮬레이션)

  • Shin, Ki-Hoon
    • Korean Journal of Computational Design and Engineering
    • /
    • v.19 no.1
    • /
    • pp.12-18
    • /
    • 2014
  • Shot-peening is frequently used on various mechanical parts because it can improve the fatigue life of components by generating compressive residual stresses on the surface. This can be done by repeatedly hitting the work-piece surface with small balls and making indentations on it. In fact, finding optimal peening time among various peening parameters is the most important. Under-peening can not improve the fatigue life sufficiently while over-peening causes cracks and reduces fatigue life in contrast. In general, optimal peening time is experimentally determined by measuring arc-height using Almen-strip in accordance with SAE J442 standard. To save the time and efforts spent in carrying out experiments to find optimal peening time, this paper presents a computer simulation algorithm for the estimation of surface coverage made by impeller type shot-peening machines (PMI-0608). Surface coverage is defined as the proportion of the work-piece surface that has been indented in a given time of shot-peening. An example (standard tensile test specimen) is presented to validate the proposed method.

Prediction of Positions of Gas Defects Generated from Core (중자에서 발생한 가스 결함 위치 예측)

  • Matsushita, Makoto;Kosaka, Akira;Kanatani, Shigehiro
    • Journal of Korea Foundry Society
    • /
    • v.42 no.1
    • /
    • pp.61-66
    • /
    • 2022
  • Hydraulic units are important components of agricultural and construction machinery, and thus require high-quality castings. However, gas defects occurring inside the sand cores of the castings due to the resin used is a problem. This study therefore aimed to develop a casting simulation method that can clarify the gas defect positions. Gas defects are thought to be caused by gas generated after the molten metal fills up the mold cavity. The gas constant is the most effective factor for simulating this gas generated from sand cores. It is calculated by gas generating temperature and analysis of composition in the inert gas atmosphere modified according to the mold filling conditions of molten metal. It is assumed that gases generated from the inside of castings remain if the following formula is established. [Time of occurrence of gas generation] + [Time of occurrence of gas floating] > [Time of occurrence of casting surface solidification] The possibility of gas defects is evaluated by the time of occurrence of gas generation and gas floating calculated using the gas constant. The residual position of generated gases is decided by the closed loops indicating the final solidification location in the casting simulation. The above procedure enables us to suggest suitable casting designs with zero gas defects, without the need to repeat casting tests.

Change of Electrical Characteristics of ZnO Arrester Blocks by Lightning Impulse Current (뇌충격전류에 의한 산화아연형 피뢰기 소자의 전기적 특성변화)

  • Gil, Gyeong-Seok;Han, Ju-Seop;Park, Yeong-Ho
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.7
    • /
    • pp.550-555
    • /
    • 1999
  • This paper deals with the effect of lightning impulse current on electrical characteristics of ZnO blocks used in distribution lightning arrester. The electrical characteristics of ZnO blocks are degraded by overtime impulse current, and the degraded ZnO block is brought to a thermal runaway and finally destroyed. It is therefore important to estimate the change of electrical characteristics of ZnO blocks. In this study, an impulse current generator which can produce 8/20$[\mus]$, 3[㎄] and 4/10$[\mus]$, 5[㎄] waveform is designed and fabricated to simulate the lightning impulse current of power systems. Total energy applied to the ZnO blocks at each time is 739[J] in 8/20$[\mus]$, and 523[J] in 4/10$[\mus]$, impulse current, respectively. From the experimental results, the 3rd harmonic of the leakage current increases continuously with the number of applied impulse current, but no significant changes in residual voltage and in reference voltage are observed until the ZnO block is destroyed. Also, it is confirmed that the main factor on degradation of ZnO blocks is rather the total energy applied to ZnO blocks than the peak value of the impulse current.

  • PDF

Effects of Storage Condition on Degradation of Automotive Polymer Electrolyte Membrane Fuel Cells (보관상태가 자동차용 고분자전해질 연료전지의 성능 감소에 미치는 영향)

  • Cho, Eun-Ae
    • Journal of the Korean Electrochemical Society
    • /
    • v.13 no.4
    • /
    • pp.277-282
    • /
    • 2010
  • Durability of automotive polymer electrolyte membrane fuel cell (PEMFC) strongly depends the startup/shutdown procedure. Formation of hydrogen/air boundary in the anode gas channel, so-called reverse current condition, particularly induces fast degradation of the cathode. Under the reverse current condition, high voltage is present at the cathode facing air in the anode gas channel and is a function of residual oxygen concentration in the gas channels, that increases with storage time and reaches 21% (air) eventually. In this study, effects of residual oxygen concentration in a PEMFC on degradation of the PEMFC.

IDLE PERFORMANCE OF AN SI ENGINE WITH VARIATIONS IN ENGINE CONTROL PARAMETERS

  • Kim, D.S.;Cho, Y.S.
    • International Journal of Automotive Technology
    • /
    • v.7 no.7
    • /
    • pp.763-768
    • /
    • 2006
  • Emission reduction in the cold start period of SI engines is crucial to meet stringent emission regulations such as SULEV Emissoin reduction is the starting point of the study in the which the variable valve timing (VVT) technology may be one promising method to minimize cold start emissions while maintaining engine performance. This is because it is possible to change valve overlap and residual gas fraction during cold start and idle operations. Our previous study showed that spark timing is another important factor for reducing cold-start emissions since it affects warm-up time of close-coupled catalysts (CCC) by changing exhaust gas temperature. However, even though these factors may be favorable for reduction of emissions, they may deteriorate combustion stability in these operating conditions. This means that the two variables should be optimized for best exhaust emissions and engine stability. This study investigated the effects of valve and spark timings in idle performance such as combustion stability and exhaust emissions. Experiments showed that valve timings significantly affected engine stability and exhaust emissions, especially CO and $NO_x$, due to change in residual gas fraction within the combustion chamber. Spark timing also affects HC emissions and exhaust gas temperature. Yet it has no significant effects on combustion stability. A control strategy of proper valve timing and spark timing is suggested in order to achieve a reduction in exhaust emissions and a stable operation of the engine in a cold start and idle operation.

A Study of Estuarine Flow using the Roving ADCP Data

  • Kang, Ki-Ryong;Iorio, Daniela Di
    • Ocean Science Journal
    • /
    • v.43 no.2
    • /
    • pp.81-90
    • /
    • 2008
  • A study of estuarine flows during a neap tide was performed using 13-hour roving acoustic Doppler current profiles (ADCP) and conductivity-temperature-depth (CTD) profiles in the Altamaha River estuary, Georgia, U.S.A. The least-squared harmonic analysis method was used to fit the tidal ($M_2$) component and separate the flow into two components: the tidal and residual ($M_2$-removed) flows. We applied this method to depth-averaged data. Results show that the $M_2$ component demonstrates over 95% of the variability of observation data. As the flow was dominated by the $M_2$ tidal component in a narrow channel, the tidal ellipse distribution was essentially a back-and-forth motion. The amplitude of $M_2$ velocity component increased slightly from the river mouth (0.45 m/sec) to land (0.6 m/sec) and the phase showed fairly constant values in the center of the channel and rapidly decreasing values near the northern and southern shoaling areas. The residual flow and transport calculated from depth-averaged flow shows temporal variability over the tidal time scale. Strong landward flows appeared during slack waters which may be attributed to increased baroclinic forcing when turbulent mixing decreases.