• Title/Summary/Keyword: residual stress from W-H model

Search Result 7, Processing Time 0.018 seconds

Prediction of birefringence distribution in cylindrical glass compression test (유리 압축 실험에서의 복굴절 분포 예측)

  • Lee J.;Na J.W.;Rhim S.H.;Oh S.I.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.95-100
    • /
    • 2004
  • An analysis using FEM simulation was conducted to predict residual stresses and birefringence in simple compressed cylindrical glass as a preliminary part of the optimum design determination of optical lenses. The FEM simulation with the Maxwell viscoelastic constitutive model was used to predict thermal induced residual stresses and birefringence during the compression test considering stress relaxation. Also the linear photoelastic theory was introduced to calculate birefringence from the residual stress state. The simulation results were in good agreement with deformation and birefringence distribution in the existing experimental result.

  • PDF

Prediction of Birefringence Distribution in Cylindrical Glass Compression Test (유리 압축 실험에서의 복굴절 분포 예측)

  • Lee J.;Na J. W,;Rhim S.H.;Oh S.I.
    • Transactions of Materials Processing
    • /
    • v.13 no.6 s.70
    • /
    • pp.509-514
    • /
    • 2004
  • An analysis using FEM simulation was conducted to predict residual stresses and birefringence in simple compressed cylindrical glass as a preliminary part of the optimum design determination of optical lenses. The FEM simulation with the Maxwell viscoelastic constitutive model was used to predict thermal induced residual stresses and birefringence during the compression test considering stress relaxation. Also the linear photoelastic theory was introduced to calculate birefringence from the residual stress state. The error of simulation results between experimental results in the birefringence value at the center of glass specimen is $4.2\%$, and the error in the maximum radius of deformed glass specimen is $1.2\%$. The simulation results were in good agreement with deformation and birefringence distribution in the existing experimental result.

A Semi-analytical Approach for Numerical Analysis of Residual Stress in Oxide Scale Grown on Hot-rolled Steels (열간압연강에서 형성된 산화물 스케일의 잔류 응력 수치 분석을 위한 준해석적 방법 개발)

  • Y.-J. Jun;J.-G. Yoon;J.-M. Lee;S.-H. Kim;Y.-C. Kim;S. Nam;W. Noh
    • Transactions of Materials Processing
    • /
    • v.33 no.3
    • /
    • pp.200-207
    • /
    • 2024
  • In this study, we developed a semi-analytical approach for the numerical analysis of residual stress in oxide scales formed on hot-rolled steels. The oxide scale, formed during the hot rolling process, experiences complex interactions due to thermal and mechanical influences, significantly affecting the material's integrity and performance. Our research focuses on integrating various stress components such as thermal stress, growth stress, and creep behavior to predict the residual stress within the oxide layer. The semi-analytical method combines analytical expressions for each stress component with numerical integration to account for their cumulative effects. Validation through instrumented indentation tests confirms the reliability of our model, which considers thermal expansion coefficient (CTE) differences, scale growth, and creep-induced stress relaxation. Our findings indicate that thermal stress resulting from CTE differences significantly impacts the overall residual stress, with growth stress contributing a compressive component during cooling, and creep behavior playing a minor role in stress relaxation. This comprehensive approach enhances the accuracy of residual stress prediction, facilitating the optimization of material design and processing conditions for hot-rolled steel products.

Comparative Study on Various Ductile Fracture Models for Marine Structural Steel EH36

  • Park, Sung-Ju;Lee, Kangsu;Cerik, Burak Can;Choung, Joonmo
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.3
    • /
    • pp.259-271
    • /
    • 2019
  • It is important to obtain reasonable predictions of the extent of the damage during maritime accidents such as ship collisions and groundings. Many fracture models based on different mechanical backgrounds have been proposed and can be used to estimate the extent of damage involving ductile fracture. The goal of this study was to compare the damage extents provided by some selected fracture models. Instead of performing a new series of material constant calibration tests, the fracture test results for the ship building steel EH36 obtained by Park et al. (2019) were used which included specimens with different geometries such as central hole, pure shear, and notched tensile specimens. The test results were compared with seven ductile fracture surfaces: Johnson-Cook, Cockcroft-Latham-Oh, Bai-Wierzbicki, Modified Mohr-Coulomb, Lou-Huh, Maximum shear stress, and Hosford-Coulomb. The linear damage accumulation law was applied to consider the effect of the loading path on each fracture surface. The Swift-Voce combined constitutive model was used to accurately define the flow stress in a large strain region. The reliability of these simulations was verified by the good agreement between the axial tension force elongation relations captured from the tests and simulations without fracture assignment. The material constants corresponding to each fracture surface were calibrated using an optimization technique with the minimized object function of the residual sum of errors between the simulated and predicted stress triaxiality and load angle parameter values to fracture initiation. The reliabilities of the calibrated material constants of B-W, MMC, L-H, and HC were the best, whereas there was a high residual sum of errors in the case of the MMS, C-L-O, and J-C models. The most accurate fracture predictions for the fracture specimens were made by the B-W, MMC, L-H, and HC models.

A Parametric Study on the Springback Considering the Stress Variability in Explicit Finite Element Analysis (외연적 유한요소해석에서의 응력 변동성을 고려한 스프링백 영향 인자 연구)

  • Lee K. D.;Kwon J. W.;Jun B. H.;Kim S. J.;Kim H. J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.10a
    • /
    • pp.136-140
    • /
    • 2000
  • It is desirable to predict springback quantitatively and accurately for the tool and process design in sheet stamping operations, however, it is blown very difficult. The result of springback analysis by the finite element method is sensitively influenced by numerical factors such as blank element size, number of integration point, punch velocity, contact algorithm etc. In the present work, a parametric study by Taguchi method is performed in order to evaluate the influence of numerical factors on springback Quantitatively and to obtain the combination of numerical factors which yields the best approximation to experimental data. Since springback is determined by the residual stress after forming process, it is important to evaluate stress distribution accurately. The oscillation in the time history curve of stress obtained by explicit FEM says that the stress solution at termination time is in very unstable state. Therefore, a variability study is also carried out in this study in order to assess the stability of implicit springback analysis starting from the stress solution by explicit forming simulation. The 2D draw bending process, one of the NUMISHEET '93 benchmark problems, is adopted as an application model.

  • PDF

Experimental and numerical study on viscoelastic behavior of polymer during hot embossing process (핫엠보싱 공정의 폴리머 점탄성 거동에 대한 연구)

  • Song, N.H.;Son, J.W.;Rhim, S.H.;Oh, S.I.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.191-194
    • /
    • 2007
  • In hot embossing lithography which has shown to be a good method to fabricate polymeric patterns for IT and bio components, it is very important to determine the proper process conditions of pressure, temperature, and time. It is also a key factor for predicting the optical properties of final product to calculate residual stress distribution after the embossing process. Therefore, to design the optimum process with right conditions, the ability to predict viscoelastic behavior of polymer during and after the hot embossing process is required. The objective of the present investigation is to establish simulation technique based on constitutive modeling of polymer with experiments. To analyze deformation behavior of viscoelastic polymer, the large strain material properties were obtained from quasi-static compression tests at different strain rates and temperatures and also stress relaxation tests were executed. With this viscoelastic material model, finite element simulation of hot embossing was executed and stress distribution is obtained. Proper process pressure is very important to predict the defect and incomplete filling.

  • PDF

Green synthesis of potassium silicate nanoparticles from biomass ashes and their antimicrobial potential

  • Abhishek Sharma;Anirudh kumar;Vikas Kumar;Garima Sharma;Vini Madathil;DVN Sudheer Pamidimari;Beer Pal Singh;Satendra Pal Singh;Ashish Ranjan Sharma;Sanjeev Kumar Sharma
    • Advances in nano research
    • /
    • v.17 no.5
    • /
    • pp.463-475
    • /
    • 2024
  • Biogenic potassium silicate (K2SiO3) NPs were synthesized from the biomasses of walnut shell (w-K2Si), pinewood stem (p-K2SiO3), and sugarcane bagasse (s-K2SiO3) by ambient fiery and KOH-assisted thermal process. The crystallite size (D) of w-K2SiO3, p-K2SiO3, and s-K2SiO3 NPs were determined to be 73 nm, 53 nm and 47 nm using Debye-Scherrer's formula. The varied strain of all samples was observed in the 0.284 to 0.301 range. Microstructure showed the cubical geometry with an irregular grain size of K2SiO3 NPs, while the SAED pattern confirmed the polycrystalline nature. The Eg of w-K2SiO3, p-K2SiO3, and s-K2SiO3 NPs was determined from Tauc's plot to be 3.66 eV, 3.75 eV, and 3.78 eV, which are closely matched to be 3.78 eV, 3.88 eV, and 3.79 eV estimated from the XPS core-level analysis. The antibacterial activity of w-K2SiO3, p-K2SiO3, and sK2SiO3 NPs was investigated against E. coli and S. aureus bacteria. Compared to K2SiO3 NPs, the s-K2SiO3 were found to be highly toxic against E. coli and S. aureus and completely inhibited the growth of both organisms within 6 h. The findings represent the novel low-cost development of K2SiO3 NPs with potent antibacterial activities.