• Title/Summary/Keyword: residual strength and toughness

Search Result 81, Processing Time 0.02 seconds

Compressive and Flexural Properties of Concrete Reinforced with High-strength Hooked-end Steel Fibers (고강도 후크형 강섬유로 보강된 콘크리트의 압축 및 휨 성능)

  • Wang, Qi;Kim, Dong-Hwi;Yun, Hyun-Do;Jang, Seok-Joon;Kim, Sun-Woo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.6
    • /
    • pp.209-217
    • /
    • 2021
  • This paper investigates the effect of high strength hooked-end steel fiber content and aspect ratio on the compressive and flexural performance of concrete. A total of ten mixtures were prepared and tested. Concretes with specific compressive strength of 30 MPa were reinforced with three different aspect ratios (l/d) of steel fibers 64, 67, and 80 and three different percentages of steel fibers 0.25, 0.50, and 0.75% by volume of concrete. Tensile strengths of steel fibers with l/d of 64, 67, and 80 are 2,000, 2,400, and 2,100 MPa, respectively. The compressive and flexural properties of plain and steel fiber-reinforced concrete (SFRC) mixtures were evaluated and compared. The experimental results indicated that the incorporation of high-strength hooked-end steel fibers had significant effects on the compressive and flexural performance of concrete. With the increase of steel fiber content, compressive performances, such as Poisson's ratio and toughness, of concrete were improved. The steel fibers with the least l/d of 67 resulted in a larger enhancement of compressive performances. The residual flexural strength, that is, post-cracking flexural resistance and toughness, of concrete is mainly depended on the dosage and aspect ratio of steel fibers. The residual flexural strength at serviceability (SLS) and ultimate limit state (ULS) defined in fib Model Code 2010 (MC2010) is increased as the fiber content and aspect ratio increase.

Effects of Inclusions on Fracture Toughness for 1%CrMoV Rotor Steel (1%CrMoV 로터강의 파괴인성에 미치는 개제물의 영향)

  • Jeong, Sun-Eok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.9 s.180
    • /
    • pp.2319-2325
    • /
    • 2000
  • This thesis studied that seven kinds of residual elements(inclusions) had influenced on fracture toughness($K_{IC}$) obtained by Begley-Logsdon and Rolfe-Novak model equation using tensile an d impact test data of I%CrMoV HP(high pressure) rotor steel. $K_{IC}$ design curve of ASME and fracture surface by SEM were also considered, obtained results are summarized as follows $K_{IC}$ was linearly increased with increase of temperature, effect of the inclusions was significantly over FATT. $K_{IC}$ at lower shelf temperature was quantitatively related to yield strength and was agreed well with Begley's equation. It was difficult to determine $K_{IC}$ because of specimen size and tester capacity at upper shelf temperature, but for this view point Rolfe-Novak's equation was useful. The degree of brittle fracture was dependent on FATT fundamentally, adding S, Sb to matrix decreased impact energy and adding Cu, As increased yield(tensile) strength, and the influence of the others minority inclusion was comparatively insignificant.

Effect of Sintering Temperature on Microstructure and Mechanical Properties of Cu Particles Dispersed Al2O3 Nanocomposites (Cu 입자분산 Al2O3 나노복합재료의 미세조직과 기계적 특성에 미치는 소결온도의 영향)

  • Jeong, Young-Keun;Oh, Sung-Tag;Choa, Yong-Ho
    • Journal of Powder Materials
    • /
    • v.13 no.5 s.58
    • /
    • pp.366-370
    • /
    • 2006
  • The microstructure and mechanical properties of hot-pressed $Al_2O_3/Cu$ composites with a different sintering temperature have been studied. The size of matrix grain and Cu dispersion in composites increased with increase in sintering temperature. Fracture toughness of the composite sintered at high temperature exhibited an enhanced value. The toughness increase was explained by the thermal residual stress, crack bridging and crack branching by the formation of microcrack. The nanocomposite, hot-pressed at $1450^{\circ}C$, showed the maximum fracture strength of 707 MPa. The strengthening was mainly attributed to the refinement of matrix grains and the increased toughness.

Fabrication of ZnS-SiO2 Composite and its Mechanical Properties (방전플라즈마 소결법을 이용한 ZnS-SiO2 복합재료의 제조와 기계적 특성)

  • Shin, Dae-Hoon;Kim, Gil-Su;Lee, Young-Jung;Cho, Hoon;Kim, Young-Do
    • Journal of Powder Materials
    • /
    • v.15 no.1
    • /
    • pp.1-5
    • /
    • 2008
  • ZnS-$SiO_2$ composite is normally used for sputtering target. In recent years, high sputtering power for higher deposition rate often causes crack formation of the target. Therefore the target material is required that the sintered target material should have high crack resistance, excellent strength and a homogeneous microstructure with high sintered density. In this study, raw ZnS and ZnS-$SiO_2$ powders prepared by a 3-D mixer or high energy ball-milling were successfully densified by spark plasma sintering, the effective densification method of hard-to-sinter materials in a short time. After sintering, the fracture toughness was measured by the indentation fracture (IF) method. Due to the effect of crack deflection by the residual stress occurred by the second phase of fine $SiO_2$, the hardness and fracture toughness reached to 3.031 GPa and $1.014MPa{\cdot}m^{1/2}$, respectively.

Hot Pressing of the Silicon Nitride Based Ceramics and Their Mechanical Behavior

  • Park, D.S.;Lee, S.Y.;Kim, H.D.;Park, W.S.;D.S. Lim;B.D. Han
    • The Korean Journal of Ceramics
    • /
    • v.1 no.1
    • /
    • pp.45-54
    • /
    • 1995
  • Four kinds of silicon nitride based ceramic materials have been hot pressed. Effect of the sintering additives on the phase transformation, microstructural development and mechanical properties was investigated. While sintering under the same condition a big difference among the microstructures of the specimens, they appeared alike if sintered to have a similiar $\alpha$-$\beta$ phase ratio. The specimen of the stoichiometric $\alpha$-$\beta$ sialon composition showed very limited amount of the intergranular glassy phase and a significant degree of the residual stress. It exhibited almost no strength degradation up to $1300^{\circ}C$, and the strength of the specimen degraded more as its composition deviated from the stoichiometry.

  • PDF

A Study on Cormsion Characteristics of Suspension Material by Surface Processing (표면가공법에 따른 현가장치재의 부식특성에 관한 연구)

  • Park Keyoungdong;Rpu Hyoungioo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.3
    • /
    • pp.17-23
    • /
    • 2005
  • In this study, the high strength and superior toughness spring steels as the suspension material, used for automobile and railroad industries were utilized to carry out the following investigations. Corrosion times were controlled in 7, 14,30 and 60days to examine the relation between corrosion pit and compressive residual stress in the static corrosion environment after shot peened. And then corrosion current and corrosion potential were measured for every 24 hours to investigate the corrosion mechanism. Shot peened material shows the low or rate of corrosion current as compared with unpeened material. In case of hot peened material which has the highest residual stress, it has a low corrosion current density.

Synthesis of Si3N4 using Residual Organics Trapped in the Silica Gel by Sol-Gel Method (졸-겔법으로 제조된 실리카겔중의 잔류유기물을 이용한 $Si_3N_4$의 합성)

  • 김병호;신현호;이재영
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.5
    • /
    • pp.357-366
    • /
    • 1992
  • Residual organics were considered as impurity in Sol-Gel method. The purpose of this study was to find the conditions to contain as much residual organics as possible in silica gel prepared from TEOS(tetraethylortho-silicate) by Sol-Gel method. Residual organics are to be expected to have reduction effect on synthesizing Si3N4 from silica gel. The results of this study are follows: 1) The maximum content of entrapped carbon was 19.8 wt.%(C/SiO2=0.25 wt.ratio) in silica gel synthesized under the conditions 1.5 fold mole water for incomplete hydrolysis, 2.5 fold mole phenol as a solvent and 0.1 fold mole HCl as a catalyst to TEOS. 2) Silica gel with organics entrapped by Sol-Gel method had a positive effect on the formation of Si3N4 compared with commercial silica gel. 3) Sintered body of synthesized $\alpha$-Si3N4 with Y2O3 and Al2O3 as additives at 175$0^{\circ}C$ in N2 atmosphere showed bending strength, 602$\pm$20 MPa and frature toughness 4.45$\pm$0.15 MPa.m1/2.

  • PDF

Mechanical Properties of Intermetallic/Metal Laminated Composite by SHS Reaction (자전고온반응에 의한 금속간화합물/금속 적층복합재료의 기계적 특성)

  • ;;Manabu Enoki
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.60-63
    • /
    • 2002
  • Metal/intermetallic laminated composites have been manufactured by SHS reactions between Ni and Al elemental metal foils. Microstructure showed that the intermetallic volume fraction was 55%, 45%, 35% in the 1:1, 2:1, 4:1 thickness ratio(Ni:Al) specimen and the main phases of the intermetallic were transformed from $Ni_2Al_3$ to NiAl when the thickness ratio was increased. Tensile strength and elongation were increased when the volume fraction of Ni metallic phase was increased. Under assumptions of isostrain condition, the tensile strength of metal/intermetallic laminated composites didn't obey the ROM due to the thermal residual stress and this was confirmed by X-ray residual stress analysis. Fracture toughness results by the SENB test showed R-curves with upward curvature based on LSB condition. Bridging stress based on LSB condition was determined by the curve fitting analysis, In-situ observed microstructure during fracture test showed that the various bridging mechanism such as crack bridging, crack branching and ductile failure of metallic layer were occurred

  • PDF

Fire Resistance Test of Steel Fiber Reinforced Concrete (강섬유보강콘크리트의 내화성에 관한일실험)

  • 윤재환
    • Fire Science and Engineering
    • /
    • v.1 no.1
    • /
    • pp.19-26
    • /
    • 1987
  • In this study, fire resistance of steel fiber reinforced concrete was investigated Cylindrical and prismatic specimens made of Ordinary Portland Cement plain concrete and steel fiber reinforced concrete were exposed to heating in accordance with a standard time-temperature curve as specified in KS·F22 57, method of fire resistance test for structural parts of buildings, the period of heating was 1 hour and 2 hours. After the fire resistance test, mechanical properties of specimens such as compressive and bending strength, stress-strain curve, static and dynamic modulus of elasticity and bending toughness were investigated. Also the cracks and spallings of the specimens were observed. From the test results, it was confirmed that steel fiber reinforced concrete has a excellent fire resistance than plain concrete in the view of higher residual strength of concrete and smaller crackings because of steel fibers in concrete.

  • PDF

The Evaluation of Materials Degradation in Modified 9Cr-1Mo Steel (Modified 9Cr-1Mo 강의 열화도 평가)

  • Hyeon, Yang-Gi;Lee, Jae-Do
    • 연구논문집
    • /
    • s.31
    • /
    • pp.157-163
    • /
    • 2001
  • Evolution of microstructure due to service exposure to high temperature has a strong effect performance of heat resistant steels. In case of modified 9Cr-1Mo steels, precipitation of $Fe_2Mo$-type laves phases and coarcening of $M_23C_6$-type carbides is the primary cause of degradation of mechanical properties such as creep resistance, tensile strength and toughness. Creep tests have been carried out on pre-aging mod. 9Cr-1Mo steels to examine the effect of pre-aging and stress on the creep strength. Based on the results, a nondestructive procedure, where electrochemical technique that quantitatively detect laves phases and $M_23C_6$-type carbides in a material is used, has been proposed to evaluate a residual creep life of mod. 9Cr-1Mo steels.

  • PDF