• Title/Summary/Keyword: residual shear strength

Search Result 160, Processing Time 0.029 seconds

Ring Shear Characteristics of Waste Rock Materials in Terms of Water Leakage (누수유무에 따른 광산폐석의 링전단특성)

  • Jeong, Sueng Won
    • The Journal of Engineering Geology
    • /
    • v.26 no.3
    • /
    • pp.307-314
    • /
    • 2016
  • Shear characteristics of soils can be investigated using various types of shear stress measuring apparatus. Ring shear tests are often applied for examining the residual shear strength under the unlimited deformation. This paper presents drainage-consolidation-shear velocity dependent undrained shear strengths measured in terms of water leakage. A series of ring shear tests were performed under the constant normal stress (50 kPa) and controled shear velocity ranging from 0.01~1 mm/sec under the undrained condition. As a result, undrained shear strengths are dependent on shear velocity. It exhibits that straining hardening behavior is observed for the shear velocity lower than 0.1 mm/sec; however, the strain softening behavior is observed for the shear velocity higher than 0.1 mm/sec. Water leakage can cause the increase in shear stress irrespective of shear velocity. Shear stress increases with increasing amount of water leakage. It is due to the fact that the small grains and water flow out through the rubble edge in the ring shear box. Repetitive saturation and consolidation processes may minimize the error.

Study on Damage Evaluation Model for Reinforced Concrete Members (철근콘크리트 부재의 손상량 평가 모델에 관한 연구)

  • Cho, Byung Min;Maeda, Masaki;Kim, Taejin
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.19 no.2
    • /
    • pp.75-83
    • /
    • 2015
  • The purpose of this study is to improve the previous damage evaluation model for RC members which is proposed by Igarashi[1] in 2010.The previous model was not confirmed by enough data of damage such as, residual crack length, width and area for exfoliation of concrete, etc. In addition, validation of the model is still insufficient. Therefore, experiment of a real-scale RC structure and experiment of RC columns using the high-strength concrete were conducted to gather the data of damage in RC members. The investigation has been conducted gathering the data not only additional experiments data but also existing data for modification of damage evaluation model. It has been investigated on changing damage in RC due to axial force ratio, shear reinforcement and shear span ratio. As a result, several problems were founded in the previous model, such as, hinge length($l_p$), spacing of flexural crack($S_{av,f}$), total width of flexural cracks regulated by maximum width of flexural crack($n_f$) and total width of shear cracks regulated by maximum width of shear crack($n_s$). New model is proposed and evaluated the damage properly.

Shearing characteristics of slip zone soils and strain localization analysis of a landslide

  • Liu, Dong;Chen, Xiaoping
    • Geomechanics and Engineering
    • /
    • v.8 no.1
    • /
    • pp.33-52
    • /
    • 2015
  • Based on the Mohr-Coulomb failure criterion, a gradient-dependent plastic model that considers the strain-softening behavior is presented in this study. Both triaxial shear tests on conventional specimen and precut-specimen, which were obtained from an ancient landslide, are performed to plot the post-peak stress-strain entire-process curves. According to the test results of the soil strength, which reduces from peak to residual strength, the Mohr-Coulomb criterion that considers strain-softening under gradient plastic theory is deduced, where strength reduction depends on the hardening parameter and the Laplacian thereof. The validity of the model is evaluated by the simulation of the results of triaxial shear test, and the computed and measured curves are consistent and independent of the adopted mesh. Finally, a progressive failure of the ancient landslide, which was triggered by slide of the toe, is simulated using this model, and the effects of the strain-softening process on the landslide stability are discussed.

An Experimental Study of Strength Evaluation in Frozen Soils according to Direct Shear Box Systems (직접전단상자 시스템에 따른 동결토의 강도 평가에 관한 실험적 연구)

  • Kim, Sang Yeob;Kim, YoungSeok;Lee, Jangguen;Lee, Jong-Sub
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.3
    • /
    • pp.5-14
    • /
    • 2017
  • Experimental study on strength characteristics of frozen soils is necessary for the safety evaluation of design and construction in cold region. The objective of this study is to evaluate the direct shear strength of frozen soils obtained from traditional system (Type-1), system with roller on the upper shear box (Type-2), and system with fixed upper shear box separated from bottom shear box (Type-3). Specimens mixed with sand, silt, and water are frozen to $-5^{\circ}C$, and then direct shear tests are conducted under the normal stress of 5, 10, 25, and 50 kPa. Experimental results show that the upper shear box of Type-1 touches the bottom shear box due to the rotation of the upper shear box. The shear strength obtained from Type-2 is overestimated because the preventing rotation force is added to shear force. Type-3 may acquire the only strength of the specimen, and shear strain at peak shear strength is similar to that at the beginning of vertical displacement occurrence. In addition, internal friction angle and cohesion at both peak and residual stresses in Type-3 are smaller than those of Type-2. This study shows that high strength specimens including frozen soils can be effectively evaluated using improved shear box system such as Type-3.

Effect of Silty Soil Content on Shear Behavior of Sandy Soil (사질토의 전단거동에 실트 함량이 미치는 영향)

  • Yu, Jeongseok;Ahn, Kwangkuk;Kang, Hongsig
    • Journal of the Korean GEO-environmental Society
    • /
    • v.21 no.11
    • /
    • pp.21-26
    • /
    • 2020
  • Natural soil is composed of particles of various sizes, and the shear behavior which is a kind of mechanical behavior of the soil is affected by the particle size distribution. In addition, since the natural soil contains a large mixture of coarse and fine grained soil, it is difficult to clearly understand the shear behavior of the soil. Therefore, a ring shear test was conducted on sandy soils that has various particle size distribution in order to identify the effect of the distribution on shear characteristics of soils. At this time, sand and silt were used for coarse and fine grained soils, respectively, to make sandy soils by changing the silt content. Also the water was supplied during the test to confirm shear characteristics of sandy soils with various particle size distributions. The result shows that the shear strength increases as the silt content increases, and the strength decreases as the silt content increases over the sand. Besides, residual shear strength gradually decreases because of the silt content when the water is supplied.

Hydro-mechanical behavior of compacted silt over a wide suction range

  • Chen, Bo;Ding, Xiuheng;Gao, You;Sun, De'an;Yu, Haihao
    • Geomechanics and Engineering
    • /
    • v.22 no.3
    • /
    • pp.237-244
    • /
    • 2020
  • To achieve a wide suction range, the low suction was imposed on compacted silt specimens by the axis translation technique and the high suction was imposed by the vapor equilibrium technique with saturated salt solutions. Firstly, the results of soil water retention tests on compacted silt show that the soil water retention curves in terms of gravimetric water content versus suction relation are independent of the dry density or void ratio in a high suction range. Therefore, triaxial tests on compacted silt with constant water content at high suctions can be considered as that with constant suction. Secondly, the results of triaxial shear tests on unsaturated compacted silt with the initial void ratio of about 0.75 show a strain-hardening behavior with a slightly shear contraction and then strain-softening behavior with an obviously dilation. As the imposed suction increases, the shear strength increases up to a peak value and then decreases when the suction is beyond a special value corresponding to the peak shear strength. The residual strength increases to fair value and those at high suctions are almost independent of imposed suctions. In addition, the contribution of suction to the strength of compacted silt would not diminish even in a high suction range.

Nondestructive Interfacial Evaluation and Cure Monitoring of Carbon Fiber/Epoxyacrylate Composite with UV and Thermal Curing Using Electro-Micromechanical Technique (Electro-Micromechanical 시험법을 이용한 탄소 섬유 강화 에폭시아크릴레이트 복합재료의 자외선과 열경화에 따른 경화 모니터링 및 비파괴적 계면 평가)

  • 박종만;공진우;김대식;이재락
    • Polymer(Korea)
    • /
    • v.27 no.3
    • /
    • pp.189-194
    • /
    • 2003
  • Interfacial evaluation, damage sensing and cure monitoring of single carbon fiber/thermo setting composite with different curing processes were investigated using electro-micromechanical test. After curing, the residual stress was monitored by measurement of electrical resistance and then compared to various curing processes. In thermal curing case, matrix tensile strength, modulus and interfacial shear strength were higher than those of ultraviolet curing case. The shrinkage measured during thermal curing occurred significantly by matrix shrinkage and residual stress due to the difference in thermal expansion coefficient. The apparent modulus measured in the thermal curing indicated that mechanical and interfacial properties were highly improved. The reaching time to the same stress of thermal curing was faster than that of UV curing case.

Fatigue Safety Evaluation of the Half-Depth Precast Deck with RC Rib Panel (리브 형상을 갖는 반단면 프리캐스트 바닥판의 피로 안전성 평가)

  • Hwang, Hoon Hee
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.5
    • /
    • pp.103-110
    • /
    • 2019
  • In order to reduce the accidents occurring at construction sites, it is necessary to approach with harmonious measures considering various aspects such as systems, training, facilities, and protection equipments. Suggestion of safe construction method can be a good alternative. In the previous study, the half-depth precast deck with RC rib panel was proposed as an alternative method for safe bridge deck construction, and the performance required by the design code was verified through a four-point bending test. But the actual bridge deck is subjected to the repetitive action of the wheel load rather than the bending condition due to the four-point load. In this study, fatigue test was performed by repeating the wheel load $2{\times}10^6$ cycles to verify the safety of the half-depth precast deck with RC rib panel under actual conditions. As a result, fatigue effect due to repetition of wheel load was not significant in terms of serviceability such as crack width and deflection. In the residual strength test conducted after the fatigue test, the half-depth precast deck with RC rib panel failed by punching shear which is typical failure mode of bridge decks and the residual strength was similar to the punching strength of the RC and PSC bridge decks in spite of the fatigue effects.

Shear Strength of Ultra-High Performance Fiber-Reinforced Concrete(UHPFRC) I-shaped Beams without Stirrup (강섬유 보강 초고성능 콘크리트(UHPFRC) I형 보의 전단 강도)

  • Lee, Ji-Hyung;Hong, Sung-Gul
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.1
    • /
    • pp.53-64
    • /
    • 2017
  • Ultra-high performance fiber-reinforced concrete (UHPFRC) is characterized by a post-cracking residual tensile strength with a large tensile strain as well as a high compressive strength. To determine a material tensile strength of UHPFRC, three-point loading test on notched prism and direct tensile test on doubly notched plate were compared and then the design tensile strength is decided. Shear tests on nine I-shaped beams with varied types of fiber volume ratio, shear span ratio and size effect were conducted to investigate shear behavior in web. From the test results, the stress redistribution ability represented as diagonal cracked zone was quantified by inclination of principal stress in web. The test results shows that the specimens were capable of resistance to shear loading without stirrup in a range of large deformation and the strength increase with post-cracking behavior is stable. However at the ultimate state all test specimens failed as a crack localization in the damaged zone and the shear strength of specimens is affected by shear span ratio and effective depth. Strength predictions show that the existing recommendations should be modified considering shear span ratio and effective depth as design parameters.

Strength of Reinforced Concrete Beam-Column Assembles Subjected to Seismic Loading (지진하중을 받는 철근콘크리트 접합부의 강도)

  • Lee, Jung-Yoon;Chai, Hyee-Dai
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.5 s.51
    • /
    • pp.25-33
    • /
    • 2006
  • This paper provides a method to predict the ductile capacity of reinforced concrete beam-column joints that fail in shear after the plastic hinges occur at both ends of the adjacent beams. After the plastic hinges occur at both ends of the beams, the longitudinal axial strain at the center of the beam section in the plastic hinge region abruptly increases because the neutral axis continues to move upward toward the extreme compressive fiber and the residual strain of the longitudinal bars continues to increase with each cycle of inelastic loading. An increase in the axial strain of the beam section after flexural yielding widens the cracks in the beam-column joints, thus leading to an decrease of the shear strength of the beam-column joints. The proposed method takes into account shear strength deterioration in the beam-column joints. In order to verify the shear strength and the corresponding ductility of the proposed method, test results of 52 RC beam-column assembles were compared. Comparisons between the observed and calculated shear strengths and their corresponding ductilities of the tested assembles, showed reasonable agreement.