• Title/Summary/Keyword: residual resistance ratio

Search Result 108, Processing Time 0.03 seconds

Growth of superconducting $MgB_2$ fibers for wire applications

  • Kim J. H.;Yoon H. R.;Jo W.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.7 no.4
    • /
    • pp.1-3
    • /
    • 2005
  • Superconducting $MgB_2$ fibers are in-situ grown by a diffusion method. The fibers are prepared by exposing B filaments to Mg vapor inside a folded Ta foil over a wide range of temperature and growth time. The materials are sealed inside a quartz tube by gas welding. The as - grown fibers are characterized by scanning electron microscopy and energy dispersive x - ray analysis. The fibers have a diameter of about $110{\mu}m$. Surface morphology of the fibers looks dependent on growth temperature and mixing ratio of Mg and B. Radial distribution of Mg ions into B is observed and analyzed over the cross - sectional area. Transport properties of the $MgB_2$ fibers are examined by a physical property measurement system. The $MgB_2$ fibers grown at $900^{\circ}C$ for 2 hours show a superconducting transition at 39.8K with ${\Delta}T_c<$ 2.0 K. Resistance at room temperature $MgB_2$ is 3.745 $\Omega$ and residual resistivity ratio (RRR) is estimated as 4.723.

Biological Control of the Pentatomid Stink Bug, Eocanthecona furcellata(Wolff.), by using their Parasitoid, Psix striaticeps Dodd, in Sericulture

  • Singh, R.N.;Saratchandra, Beera
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.5 no.1
    • /
    • pp.13-22
    • /
    • 2002
  • Stink bug, Canthecona furcellatta (Hemiptera: Pentatomidae), is an important predator of silkworm larvae. Nymphs and adult attack the early stage silkworm larvae and causes about 10-15 per cent loss to silk industry. Synthetic organic pesticides has tremendous impact on minimizing the pest population but repeated and frequent use has created problems of residual toxicity, development of resistance to insecticides, pest resurgence and out break, phyto-toxicity and hazards to non target species and beneficial organism. Silkworms are very sensitive to pesticides; therefore, attempt has made to control the bug population through introduction of its native natural enemies in the silkworm-rearing field. Biological control has tremendous scope in sericulture because it is eco-friendly in nature and non-harmful farmers. Native natural enemies have been screened. Psix striaticeps, Trissolcus spp. and Telenomus spp. have been recorded as the most potential parasitoid against pentatomid bug. Life cycle, sex ratio and other various attributes of the par-asitoids have been recorded. The parasitization potential of the parasitoid is very high and they have the ability to discriminate between parasitized and unpar-asitized host. Mass propopagation technique under laboratory condition has been standaydized.

Spalling Reduction Effect of PP Fibers and Silica Fume on High Strength Reinforced Concrete Columns (PP섬유 및 실리카흄이 고강도 철근콘크리트 기둥의 폭열 저감에 미치는 영향)

  • Yoo, Suk-Hyeong
    • Fire Science and Engineering
    • /
    • v.23 no.4
    • /
    • pp.1-6
    • /
    • 2009
  • High Strength Concrete has a disadvantage of the brittle failure under fire due to the spalling. It is reported that spalling is caused by the vapor pressure under fire and polypropylene (PP) fiber has an important role in protecting from spalling. The silica fume which is essentially mixed in high strength concrete decrease the permeability of concrete, and this will increase the degree of spalling. The fire resistance characteristics of high-strength reinforced concrete columns with various contents of PP fiber and silica fume were investigated in this study. In results, the ratio of unstressed residual strength of columns increases as the content of PP fiber increases from 0% to 0.2% and the ratio decreases as the content of silica fume increases from 7% to 21%.

A Study on Pullout-Resistance Increase in Soil Nailing due to Pressurized Grouting (가압 그라우팅 쏘일네일링의 인발저항력 증가 원인에 관한 연구)

  • Jeong, Kyeong-Han;Park, Sung-Won;Choi, Hang-Seok;Lee, Chung-Won;Lee, In-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.4
    • /
    • pp.101-114
    • /
    • 2008
  • Pressurized grouting is a common technique in geotechnical engineering applications to increase the stiffness and strength of the ground mass and to fill boreholes or void space in a tunnel lining and so on. Recently, the pressurized grouting has been applied to a soil-nailing system which is widely used to improve slope stability. Because interaction between pressurized grouting paste and adjacent ground mass is complicated and difficult to analyze, the soil-nailing design has been empirically performed in most geotechnical applications. The purpose of this study is to analyze the ground behavior induced by pressurized grouting paste with the aid of laboratory model tests. The laboratory tests are carried out for four kinds of granitic residual soils. When injecting pressure is applied to grout, the pressure measured in the adjacent ground initially increases for a while, which behaves in the way of the membrane model. With the lapse of time, the pressure in the adjacent ground decreases down to a value of residual stress because a portion of water in the grouting paste seeps into the adjacent ground. The seepage can be indicated by the fact that the ratio of water/cement in the grouting paste has decreased from a initial value of 50% to around 30% during the test. The reduction of the W/C ratio should cause to harden the grouting paste and increase the stiffness of it, which restricts the rebound of out-moved ground into the original position, and thus increase the in-situ stress by approximately 20% of the injecting pressures. The measured radial deformation of the ground under pressure is in good agreement with the expansion of a cylindrical cavity estimated by the cavity expansion theory. In-situ test revealed that the pullout resistance of a soil nailing with pressurized grouting is about 36% larger than that with regular grouting, caused by grout radius increase, residual stress effect, and/or roughness increase.

High aspect ratio wrinkled patterns on polymers by glancing angle deposition

  • Ko, Tae-Jun;Ahmed, Sk. Faruque;Lee, Kwang-Ryeol;Oh, Kyu-Hwan;Moon, Myoung-Woon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.335-335
    • /
    • 2011
  • Instability of a thin film attached to a compliant substrate often leads to emergence of exquisite wrinkle patterns with length scales that depend on the system geometry and applied stresses. However, the patterns that are created using the current techniques in polymer surface engineering, generally have low aspect ratio of undulation amplitude to wavelength, thus, limiting their application. Here, we present a novel and effective method that enables us to create wrinkles with a desired wavelength and high aspect ratio of amplitude over wavelength as large as to 2.5:1. First, we create buckle patterns with high aspect ratio of amplitude to wavelength by deposition of an amorphous carbon film on a surface of a soft polymer poly(dimethylsiloxane) (PDMS). Amorphous carbon films are used as a protective layer in structural systems and biomedical components, due to their low friction coefficient, strong wear resistance against, and high elastic modulus and hardness. The deposited carbon layer is generally under high residual compressive stresses (~1 GPa), making it susceptible to buckle delamination on a hard substrate (e.g. silicon or glass) and to wrinkle on a flexible or soft substrate. Then, we employ glancing angle deposition (GLAD) for deposition of a high aspect ratio patterns with amorphous carbon coating on a PDMS surface. Using this method, pattern amplitudes of several nm to submicron size can be achieved by varying the carbon deposition time, allowing us to harness patterned polymers substrates for variety of application. Specifically, we demonstrate a potential application of the high aspect wrinkles for changing the surface structures with low surface energy materials of amorphous carbon coatings, increasing the water wettability.

  • PDF

Compressive and Flexural Properties of Concrete Reinforced with High-strength Hooked-end Steel Fibers (고강도 후크형 강섬유로 보강된 콘크리트의 압축 및 휨 성능)

  • Wang, Qi;Kim, Dong-Hwi;Yun, Hyun-Do;Jang, Seok-Joon;Kim, Sun-Woo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.6
    • /
    • pp.209-217
    • /
    • 2021
  • This paper investigates the effect of high strength hooked-end steel fiber content and aspect ratio on the compressive and flexural performance of concrete. A total of ten mixtures were prepared and tested. Concretes with specific compressive strength of 30 MPa were reinforced with three different aspect ratios (l/d) of steel fibers 64, 67, and 80 and three different percentages of steel fibers 0.25, 0.50, and 0.75% by volume of concrete. Tensile strengths of steel fibers with l/d of 64, 67, and 80 are 2,000, 2,400, and 2,100 MPa, respectively. The compressive and flexural properties of plain and steel fiber-reinforced concrete (SFRC) mixtures were evaluated and compared. The experimental results indicated that the incorporation of high-strength hooked-end steel fibers had significant effects on the compressive and flexural performance of concrete. With the increase of steel fiber content, compressive performances, such as Poisson's ratio and toughness, of concrete were improved. The steel fibers with the least l/d of 67 resulted in a larger enhancement of compressive performances. The residual flexural strength, that is, post-cracking flexural resistance and toughness, of concrete is mainly depended on the dosage and aspect ratio of steel fibers. The residual flexural strength at serviceability (SLS) and ultimate limit state (ULS) defined in fib Model Code 2010 (MC2010) is increased as the fiber content and aspect ratio increase.

The Investigation of Ni Thin Film by Atomic Layer Deposition

  • Do K. W.;Yang C. M.;Kang I. S.;Kim K. M.;Back K. H.;Cho H. I.;Lee H. B.;Kong S. H.;Hahm S. H.;Kwon D. H.;Lee J. H.;Lee J. H.
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2005.09a
    • /
    • pp.193-196
    • /
    • 2005
  • Low resistance Ni thin films for using NiSi formation and metallization by atomic layer deposition (ALD) method have been studied. ALD temperature window is formed between $200^{\circ}C\;and\;250^{\circ}C$ with deposition rate of $1.25{\AA}$/cycle. The minimum resistance of deposited Ni films shows $4.333\;{\Omega}/\square$ on the $SiO_2/Si$ substrate by $H_2$ direct purging process. The reason of showing the low resistance is believed to be due to format ion of the $Ni_3C$ phase by residual carbon in Bis-Ni The deposited film exhibits excellent step coverage in the trench having 1(100 nm) : 16 (1.6 um) aspect ratio.

  • PDF

Management of the Development of Insecticide Resistance by Sensible Use of Insecticide, Operational Methods (실행방식 측면에서 살충제의 신중한 사용에 의한 저항성 발달의 관리)

  • Chung, Bu-Keun;Park, Chung-Gyoo
    • Korean journal of applied entomology
    • /
    • v.48 no.2
    • /
    • pp.123-158
    • /
    • 2009
  • An attempt was made to stimulate future research by providing exemplary information, which would integrate published knowledge to solve specific pest problem caused by resistance. This review was directed to find a way for delaying resistance development with consideration of chemical(s) nature, of mixture, rotation, or mosaics, and of insecticide(s) compatible with the biological agents in integrated pest management (IPM). The application frequency, related to the resistance development, was influenced by insecticide activity from potentiation, residual period, and the vulnerability to resistance development of chemical, with secondary pest. Chemical affected feeding, locomotion, flight, mating, and predator avoidance. Insecticides with negative cross-resistance by the difference of target sites and mode of action would be adapted to mixture, rotation and mosaic. Mixtures for delaying resistance depend on each component killing very high percentage of the insects, considering allele dominance, cross-resistance, and immigration and fitness disadvantage. Potential disadvantages associated with mixtures include disruption of biological control, resistance in secondary pests, selecting very resistant population, and extending cross-resistance range. The rotation would use insecticides in high and low doses, or with different metabolic mechanisms. Mosaic apply insecticides to the different sectors of a grid for highly mobile insects, spray unrelated insecticides to sedentary aphids in different areas, or mix plots of insecticide-treated and untreated rows. On the evolution of pest resistance, selectivity and resistance of parasitoids and predator decreased the number of generations in which pesticide treatment is required and they could be complementary to refuges from pesticides To enhance the viability of parasitoids, the terms on the insecticides selectivity and factors affecting to the selectivity in field were examined. For establishment of resistant parasitoid, migration, survivorship, refuge, alternative pesticides were considered. To use parasitoids under the pressure of pesticides, resistant or tolerant parasitoids were tested, collected, and/or selected. A parasitoid parasitized more successfully in the susceptible host than the resistant. Factors affecting to selective toxicity of predator are mixing mineral oil, application method, insecticide contaminated prey, trait of individual insecticide, sub-lethal doses, and the developmental stage of predators. To improve the predator/prey ratio in field, application time, method, and formulation of pesticide, reducing dose rate, using mulches and weeds, multicropping and managing of surroundings are suggested. Plant resistance, predator activity, selective insect growth regulator, and alternative prey positively contributed to the increase of the ratio. Using selective insecticides or insecticide resistant predator controlled its phytophagous prey mites, kept them below an economic level, increased yield, and reduced the spray number and fruits damaged.

Substitution of soybean meal with detoxified Jatropha curcas kernel meal: Effects on performance, nutrient utilization, and meat edibility of growing pigs

  • Li, Yang;Chen, Ling;Zhang, Yuhui;Wu, Jianmei;Lin, Yan;Fang, Zhengfeng;Che, Lianqiang;Xu, Shengyu;Wu, De
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.6
    • /
    • pp.888-898
    • /
    • 2018
  • Objective: The study was conducted to investigate the effects of replacing soybean meal (SBM) with different levels of detoxified Jatropha curcas kernel meal (DJM) in growing pig diets on growth performance, nutrients digestibility and meat edibility. Methods: A total of 144 pigs with initial body weight of $20.47{\pm}1.44kg$, were randomly allocated to 6 dietary treatments with 6 replications per treatment and 4 pigs per replication for a period of 79 days. Six diets (DJM0, DJM15, DJM30, DJM45, DJM60, and DJM75) were formulated using DJM to replace 0%, 15%, 30%, 45%, 60%, and 75% of SBM. From d 37 to 42, feces and urine were total collected from six barrows in each treatment. At day 79, thirty-six pigs were slaughtered for sampling. The feed intake and weight gain were recorded, while the intestinal morphology, digestive enzyme activities, nutrient digestibility and the content of residual phorbol esters in muscles were determined. Results: The results showed that increasing the replacement of SBM with DJM decreased the parameters including body weight, average daily gain, average daily feed intake, gain-to-feed ratio, weight and villus heights of duodenum, villus height and villus height/crypt depth of jejunum, digestive enzymes (protease, amylase, lipase, and trypsin) activities, and nutrients digestibility (nitrogen deposition, digestibility of nitrogen, energy digestibility, and total nitrogen utilization) (linear, p<0.05; quadratic, p<0.05) and there was no significant difference among DJM0, DJM15, and DJM30 in all measured indices. The highest diarrhea morbidity was observed in DJM75 (p<0.05). Phorbol esters were not detected in pig muscle tissues. Conclusion: The DJM was a good protein source for pigs, and could be used to replace SBM up to 30% (diet phorbol esters concentration at 5.5 mg/kg) in growing pig diets with no detrimental impacts on growth performance, nutrient utilization, and meat edibility.

Behavioral Characteristics of Decomposed Residual Solis (다짐 풍화잔적토의 거동특성 연구)

  • Lee, In-Mo;Lee, Seung-Cheol;Kim, Yong-Jin
    • Geotechnical Engineering
    • /
    • v.12 no.6
    • /
    • pp.115-126
    • /
    • 1996
  • The purpose of 1,his study is to analyze the compression and strength charactefistics of the decomposed -weathered soil originating from biotite gneiss or fine grained gneiss sampled from Poidong, Seoul : to figure out the behavioural characteristics of the decomposed -weathered soil in accordance with mineral composition and origin by comparing experimental results of residual soils. originating from granites and sampled from Bulam, Andong and Kimchun area. A series of CIU, CID CKoV, CKoD tests were car lied out. Although weathered soils have different origin and mineral composition, the slope of the NCL A was similar. It was also shown that plastic strain ratio was about 85% mainly due to the particle crushing effect during compression. The Poidong soil showed strain softening phenomenon unlike the Kimchun and Andong soils. this implies that the behavioural characteristics are affected by the origin and the mineral composition of the soil particles. Moreover, it was found that the angle of the shear resistance$(\phi')$ was dependent on the mineral composition. On the oher hand, measured Af values of decomposed weathered soils were more than one regardless of the origin and the mineral composition.

  • PDF