• Title/Summary/Keyword: residual pressure

Search Result 773, Processing Time 0.025 seconds

Numerical Simulation of Dynamic Response of Seabed and Structure due to the Interaction among Seabed, Composite Breakwater and Irregular Waves (II) (불규칙파-해저지반-혼성방파제의 상호작용에 의한 지반과 구조물의 동적응답에 관한 수치시뮬레이션 (II))

  • Lee, Kwang-Ho;Baek, Dong-Jin;Kim, Do-Sam;Kim, Tae-Hyung;Bae, Ki-Seong
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.26 no.3
    • /
    • pp.174-183
    • /
    • 2014
  • Seabed beneath and near coastal structures may undergo large excess pore water pressure composed of oscillatory and residual components in the case of long durations of high wave loading. This excess pore water pressure may reduce effective stress and, consequently, the seabed may liquefy. If liquefaction occurs in the seabed, the structure may sink, overturn, and eventually increase the failure potential. In this study, to evaluate the liquefaction potential on the seabed, numerical analysis was conducted using the expanded 2-dimensional numerical wave tank to account for an irregular wave field. In the condition of an irregular wave field, the dynamic wave pressure and water flow velocity acting on the seabed and the surface boundary of the composite breakwater structure were estimated. Simulation results were used as input data in a finite element computer program for elastoplastic seabed response. Simulations evaluated the time and spatial variations in excess pore water pressure, effective stress, and liquefaction potential in the seabed. Additionally, the deformation of the seabed and the displacement of the structure as a function of time were quantitatively evaluated. From the results of the analysis, the liquefaction potential at the seabed in front and rear of the composite breakwater was identified. Since the liquefied seabed particles have no resistance to force, scour potential could increase on the seabed. In addition, the strength decrease of the seabed due to the liquefaction can increase the structural motion and significantly influence the stability of the composite breakwater. Due to limitations of allowable paper length, the studied results were divided into two portions; (I) focusing on the dynamic response of structure, acceleration, deformation of seabed, and (II) focusing on the time variation in excess pore water pressure, liquefaction, effective stress path in the seabed. This paper corresponds to (II).

Numerical Simulation of Dynamic Response of Seabed and Structure due to the Interaction among Seabed, Composite Breakwater and Irregular Waves (I) (불규칙파-해저지반-혼성방파제의 상호작용에 의한 지반과 구조물의 동적응답에 관한 수치시뮬레이션 (I))

  • Lee, Kwang-Ho;Baek, Dong-Jin;Kim, Do-Sam;Kim, Tae-Hyung;Bae, Ki-Seong
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.26 no.3
    • /
    • pp.160-173
    • /
    • 2014
  • Seabed beneath and near coastal structures may undergo large excess pore water pressure composed of oscillatory and residual components in the case of long durations of high wave loading. This excess pore water pressure may reduce effective stress and, consequently, the seabed may liquefy. If liquefaction occurs in the seabed, the structure may sink, overturn, and eventually increase the failure potential. In this study, to evaluate the liquefaction potential on the seabed, numerical analysis was conducted using the expanded 2-dimensional numerical wave tank to account for an irregular wave field. In the condition of an irregular wave field, the dynamic wave pressure and water flow velocity acting on the seabed and the surface boundary of the composite breakwater structure were estimated. Simulation results were used as input data in a finite element computer program for elastoplastic seabed response. Simulations evaluated the time and spatial variations in excess pore water pressure, effective stress, and liquefaction potential in the seabed. Additionally, the deformation of the seabed and the displacement of the structure as a function of time were quantitatively evaluated. From the results of the analysis, the liquefaction potential at the seabed in front and rear of the composite breakwater was identified. Since the liquefied seabed particles have no resistance to force, scour potential could increase on the seabed. In addition, the strength decrease of the seabed due to the liquefaction can increase the structural motion and significantly influence the stability of the composite breakwater. Due to limitations of allowable paper length, the studied results were divided into two portions; (I) focusing on the dynamic response of structure, acceleration, deformation of seabed, and (II) focusing on the time variation in excess pore water pressure, liquefaction, effective stress path in the seabed. This paper corresponds to (I).

Numerical Simulation on Seabed-Structure Dynamic Responses due to the Interaction between Waves, Seabed and Coastal Structure (파랑-지반-해안구조물의 상호작용에 기인하는 해저지반과 구조물의 동적응답에 관한 수치시뮬레이션)

  • Lee, Kwang-Ho;Baek, Dong-Jin;Kim, Do-Sam;Kim, Tae-Hyung;Bae, Ki-Seong
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.26 no.1
    • /
    • pp.49-64
    • /
    • 2014
  • Seabed beneath and near the coastal structures may undergo large excess pore water pressure composed of oscillatory and residual components in the case of long durations of high wave loading. This excess pore water pressure may reduce effective stress and, consequently, the seabed may liquefy. If the liquefaction occurs in the seabed, the structure may sink, overturn, and eventually fail. Especially, the seabed liquefaction behavior beneath a gravity-based structure under wave loading should be evaluated and considered for design purpose. In this study, to evaluate the liquefaction potential on the seabed, numerical analysis was conducted using 2-dimensional numerical wave tank. The 2-dimensional numerical wave tank was expanded to account for irregular wave fields, and to calculate the dynamic wave pressure and water particle velocity acting on the seabed and the surface boundary of the structure. The simulation results of the wave pressure and the shear stress induced by water particle velocity were used as inputs to a FLIP(Finite element analysis LIquefaction Program). Then, the FLIP evaluated the time and spatial variations in excess pore water pressure, effective stress and liquefaction potential in the seabed. Additionally, the deformation of the seabed and the displacement of the structure as a function of time were quantitatively evaluated. From the analysis, when the shear stress was considered, the liquefaction at the seabed in front of the structure was identified. Since the liquefied seabed particles have no resistance force, scour can possibly occur on the seabed. Therefore, the strength decrease of the seabed at the front of the structure due to high wave loading for the longer period of time such as a storm can increase the structural motion and consequently influence the stability of the structure.

Early Clinical Outcomes of Tricuspid Valve Repair with a Tri-Ad Annuloplasty Ring in Comparison with the Outcomes Using an MC3 Ring

  • Jung, Woohyun;Choi, Jae Woong;Hwang, Ho Young;Kim, Kyung Hwan
    • Journal of Chest Surgery
    • /
    • v.51 no.2
    • /
    • pp.92-99
    • /
    • 2018
  • Background: We evaluated the early clinical outcomes of tricuspid valve annuloplasty (TAP) with the Tri-Ad annuloplasty ring for functional tricuspid regurgitation (TR). Methods: From January 2015 to March 2017, 36 patients underwent TAP with a Tri-Ad ring for functional TR. To evaluate the early clinical outcomes of TAP with the Tri-Ad ring, we conducted a propensity score-matched analysis comparing the Tri-Ad and $MC^3$ tricuspid annuloplasty rings (n=34 in each group). The follow-up duration was $11.0{\pm}7.07$ months. Results: There was 1 case of operative mortality (2.8%) and no cases of late mortality. Postoperative complications occurred in 15 patients (41%), including acute kidney injury in 6 patients (16%), bleeding requiring reoperation in 4 patients (11%), and low cardiac output syndrome in 4 patients (11%). There were no ring-related complications, such as atrioventricular block or ring dehiscence. The TR grade decreased significantly (from $2.03{\pm}1.06$ to $1.18{\pm}0.92$, p<0.01), as did the systolic pulmonary artery pressure (from $43.53{\pm}13.84$ to $38.00{\pm}9.72mm\;Hg$, p=0.03). There were no cases of severe residual TR, but moderate TR was observed in 3 patients, all of whom had severe TR preoperatively. Severe preoperative TR was also associated with moderate in the univariate analysis (p<0.01). In the propensity score-matched analysis comparing the Tri-Ad and $MC^3$ rings, there was no significant difference in early clinical outcomes. Conclusion: TAP with the Tri-Ad ring corrected functional TR effectively and provided good early clinical and echocardiographic results without ring-related complications. However, severe preoperative TR was associated with moderate or severe residual TR in the immediate postoperative period. A follow-up study is necessary to confirm the stability of this procedure.

Modified Fontan Operation: Physio-anatomic Causes of Low Cardiac Output and Persistent Pleural Effusion (Fontan 수술후 저심장박출증 및 지속성 흉막 삼출액이 발생되는 해부생리학적 원인)

  • Han, Jae-Jin;Seo, Gyeong-Pil
    • Journal of Chest Surgery
    • /
    • v.23 no.2
    • /
    • pp.213-221
    • /
    • 1990
  • We have experienced 62 cases of modified Fontan operations in Seoul Nat’l University Hospital from Apr. 1986 to Jul. 1989, They were 38 males and 24 females, and their age was ranged from 16 months to 15.5 years of age. [mean age : 5.73$\pm$2.99 years] There were 16 operative deaths and 2 late deaths, therefore 29% of overall mortality. Their diagnoses were as follows; 28 single ventricle, 11 tricuspid atresia, 6 DORV with LV hypoplasia, 3 pulmonary atresia with hypoplastic RV, 3 TGA with hypoplastic RV, 3 cor\ulcornerGA with hypoplastic LV and PA, 6 AV canal defects with PA, and 2 others. Low cardiac output and pleural effusion were developed frequently, so we divide 40 patients into some groups to analyze the physiologic and anatomic causes of them. By the degree of the LCO, group A was no LCO[mean amount of inotropics used: 0-5 \ulcornerg/kg/min] with 17 cases, B mild LCO [5-10] with 11, C moderate to severe LCO but alive[>10] with 8, D severe LCO to death with 4 cases. For the pleural effusion, group 1 was to be removed the chest tube within 1 week with 8 cases, group II within 3 weeks with 21 cases, group III beyond 3 weeks with 12 cases. We considered their age, diagnosis, pulmonary artery size[PA index], pulmonary artery abnormality, palliative shunt, systemic ventricular type, pulmonary artery wedge pressure, as preoperative factors, and operative methods, and as postoperative factors, CVP, LAP, arrhythmia, thrombosis, atrioventricular valvular insufficiency, etc. In the view of LCO, pulmonary artery size and PCWP were statistically significant [P<0.05], and arrhythmia, A-V valve insufficiency were inclined to the group C and D Pleural effusion was influenced by the pulmonary artery size, pulmonary artery resistance, PCWP, and CVP significantly. [P<0.05] And arrhythmia, residual shunt, and A-V valvular insufficiency were inclined to group II and III, too. As a results, the followings are to be reminded as the important factors at the care of post-Fontan LCO, and persistent pleural effusion [1] pulmonary artery size, [2] pulmonary artery resistance, [3] PCWP, [4] CVP, [5] arrhythmia, [6] residual shunt, [7]A-V valvular insufficiency.

  • PDF

Seasonal Variations of Direct Solar Irradiance with Ground and Air Atmospheric Data Fusion for Peninsular Type Coastal Area (지상 및 고도별 대기측정 자료 융합을 이용한 반도형 해안지역의 직달일사량 계절 변화 연구)

  • Choi, Ji Nyeong;Lee, Sanghee;Seong, Sehyun;Ahn, Ki-Beom;Kim, Sug-Whan;Kim, Jinho;Park, Sanghyun;Jang, Sukwon
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.3
    • /
    • pp.411-423
    • /
    • 2020
  • Localized solar irradiance is normally derived from atmospheric transmission influenced by atmospheric composition and conditions of the target area. Specially, for the area with complex coastal lines such as Taean gun, the accurate estimation of solar irradiance requires for in depth analysis of atmospheric transmission characteristics based on the localized vertical profiles of the key atmospheric parameters. Using MODTRAN (MODerate resolution atmospheric TRANsmission) 6, we report a computational study on clear day atmospheric transmission and direct solar irradiance estimation of Taean gun using the data collected from 3 ground stations and radiosonde measurement over 93 clear days in 2018. The MODTRAN estimated direct solar irradiance is compared with the measurement. The results show that the normalized residual mean (NRM) is 0.28 for the temperature based MODTRAN atmospheric model and 0.32 for the pressure based MODTRAN atmospheric model. These values are larger than 0.1~0.2 of the other study and we understand that such difference represents the local atmospheric characteristics of Taean gun. The results also show that NRM tends to increase noticeably in summer as the temperature increases. Such findings from this study can be very useful for estimation and prediction of the atmospheric condition of the local area with complex coastal lines.

A Study on Safety Estimation of Railroad Wheel (컨테이너 철도차륜의 안전성 평가에 관한 연구)

  • Lee, Dong-Woo;Kim, Jin-Nam;Cho, Seok-Swoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.4
    • /
    • pp.1178-1185
    • /
    • 2010
  • Recently, high speed of container freight cars is causing fatigue damage of wheel. Sudden failure accidents cause a lot of physical and human damages. Therefore, damage analysis for wheel prevents failure accident of container freight car. Wheel receives mechanical and thermal loads at the same time while rolling stocks are run. The mechanical loads applied to wheel are classified by the horizontal load from contact of wheel and rail in curve line section and by the vertical force from rolling stocks weight. Also, braking and deceleration of rolling stocks cause repeated thermal load by wheel tread braking. Specially, braking of rolling stocks is frictional braking method that brake shoe is contacted in wheel tread by high breaking pressure. Frictional heat energy occurs on the contact surface between wheel tread and brake shoe. This braking converts kinetic energy of rolling stocks into heat energy by friction. This raises temperature rapidly and generates thermal loads in wheel and brake shoe. There mechanical and thermal loads generate crack and residual stress in wheel. Wetenkamp estimated temperature distribution of brake shoe experimentally. Donzella proposed fatigue life using thermal stress and residual stress. However, the load applied to wheel in aforementioned most researches considered thermal load and mechanical vertical load. Exact horizontal load is not considered as the load applied to wheel. Therefore, above-mentioned loading methods could not be applied to estimate actual stress applied to wheel. Therefore, this study proposed safety estimation on wheel of freight car using heat-structural coupled analysis on the basis of loading condition and stress intensity factor.

Long-term Variation of Radon in Granitic Residual Soil at Mt. Guemjeong in Busan, Korea (화강암 잔류 토양의 토양 가스 중 라돈의 장기적 변화 특성)

  • Moon, Ki-Hoon;Kim, Jin-Seop;Ahn, Jung-Keun;Kim, Hyun-Chul;Lee, Hyo-Min
    • The Journal of the Petrological Society of Korea
    • /
    • v.18 no.4
    • /
    • pp.279-291
    • /
    • 2009
  • Radon is a natural radionuclide originated from radioactive decay of radium in rocks and soil. It is colorless, odorless and tasteless elements that mainly distributed as gaseous phase in soil pore space. The present study analyzed the characteristics of long-term radon variation in granitic residual soil at Mt. Guemjeong in Guemjeong-gu, Busan and determined the effects of atmospheric temperature, rainfall and soil temperature and moisture. Periodic measurements of radon concentrations in soil gas were conducted by applying two types of in-situ monitoring methods (chamber system and tubing system). Radon concentration in soil gas was highest in summer and lowest in winter. The variations in soil temperature and atmospheric temperature were most effective factors in the long-term radon variations and showed positive co-relations. The air circulation between soil air and atmosphere by the temperature difference between soil and atmosphere was analyzed a major cause of the variation. However, other factors such as atmospheric pressure, rainfall and soil moisture were analyzed relatively less effective.

Regional Realtime Ocean Tide and Storm-surge Simulation for the South China Sea (남중국해 지역 실시간 해양 조석 및 폭풍해일 시뮬레이션)

  • Kim, Kyeong Ok;Choi, Byung Ho;Lee, Han Soo;Yuk, Jin-Hee
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.30 no.2
    • /
    • pp.69-83
    • /
    • 2018
  • The South China Sea (SCS) is a typical marginal sea characterized with the deep basin, shelf break, shallow shelf, many straits, and complex bathymetry. This study investigated the tidal characteristics and propagation, and reproduced typhoon-induced storm surge in this region using the regional real-time tide-surge model, which was based on the unstructured grid, resolving in detail the region of interest and forced by tide at the open boundary and by wind and air pressure at the surface. Typhoon Haiyan, which occurred in 2013 and caused great damage in the Philippines, was chosen as a case study to simulate typhoon's impact. Amplitudes and phases of four major constituents were reproduced reasonably in general, and the tidal distributions of four constituents were similar to the previous studies. The modelled tide seemed to be within the acceptable levels, considering it was difficult to reproduce the tide in this region based on the previous studies. The free oscillation experiment results described well the feature of tide that the diurnal tide is prevailing in the SCS. The tidal residual current and total energy dissipation were discussed to understand the tidal and sedimentary environments. The storm-surge caused by typhoon Haiyan was reasonably simulated using this modeling system. This study established the regional real-time barotropic tide/water level prediction system for the South China Sea including the seas around the Philippines through the validation of the model and the understanding of tidal characteristics.

The Crystallographic and Magnetic Properties of $Fe_{0.8}Co_{0.18}(BN_{0.02}$ Synthesized by Heat Treatment and Plastic Deformation ($Fe_{0.8}Co_{0.18}(BN_{0.02}$의 열처리 및 소성변형에 의한 결정구조와 자기적 성질)

  • 김정기;한경훈;이상문;정재윤;김예니;신경호
    • Journal of the Korean Magnetics Society
    • /
    • v.10 no.5
    • /
    • pp.225-231
    • /
    • 2000
  • The crystallographic and magnetic properties of the sample F $e_{0.8}$ $Co_{0.18}$(BN)$_{0.02}$ synthesized by microwave arc-melting with the maximum power of 3.5 kW have been studied by the methods of an X-ray diffraction and the measurement of the magnetic hysteresis using the vibrating sample magnetometer at room temperature. The samples were prepared in a form of pellet pressed under the pressure of 9,000 N/c $m^2$, rolled coldly, and treated with the different temperatures. The X-ray diffraction pattern of pelleted sample shows that the crystal structure of the sample is bcc as same as that of Fe with a good uniformity. The X-ray diffraction pattern shows that a residual stress, which exists in the sample, is eliminated by final 90$0^{\circ}C$ annealing. As rolling rate and heat treatment temperature increases, the saturation magnetization and the remanence of the samples increase whereas the coercivity of the samples shows decrease. Also the saturation magnetization and the remanence of the samples were affected by rolling rate and rolling direction than heat treatment temperature, but the coercivity of the samples was affected by rolling rate and direction as well as heat treatment temperature. This means that a domain wall motion is easy due to elimination of a residual stress and an inclusion which exists in the sample by rolling and heat treatment and a local induced-magnetization easy axis was also formed to parallel to the rolling direction due to creation of the like-atom pairs across the slip plane by rolling......

  • PDF