• 제목/요약/키워드: residual prediction

Search Result 568, Processing Time 0.034 seconds

A Study on the Prediction of Residual Strength of Concrete Filled Steel Tube Column without Fire Protective Coating by Unstressed Heating (비재하 가열에 의한 무내화피복 CFT 기둥의 잔존내력 예측에 관한 연구)

  • Kim, Gyu-Yong;Lee, Hyoung-Jun;Lee, Tae-Gyu;Kim, Young-Sun;Kang, Sun-Jong
    • Fire Science and Engineering
    • /
    • v.23 no.3
    • /
    • pp.31-39
    • /
    • 2009
  • Recently, fire resistance in high-rise building is becoming major problem socially. So it is need of hour to study on fire resistance in buildings. This study estimates fire resistance performance to utilized CFT (Concrete filled steel tube, below CFT) column in the high structure. But it is difficult quantitative evaluation about fire resistant performance of CFT. Therefore, this study made CFT specimen that determine the factor which is strength of concrete and then CFT column was exposed to heating controlled as closely as possible the ISO-834 standard fire curve. Also, tried to analyze internal temperature through nonlinear transient heat flow analysis. And, presumed extant compressive strength on the basis of this.

Prediction of Positions of Gas Defects Generated from Core (중자에서 발생한 가스 결함 위치 예측)

  • Matsushita, Makoto;Kosaka, Akira;Kanatani, Shigehiro
    • Journal of Korea Foundry Society
    • /
    • v.42 no.1
    • /
    • pp.61-66
    • /
    • 2022
  • Hydraulic units are important components of agricultural and construction machinery, and thus require high-quality castings. However, gas defects occurring inside the sand cores of the castings due to the resin used is a problem. This study therefore aimed to develop a casting simulation method that can clarify the gas defect positions. Gas defects are thought to be caused by gas generated after the molten metal fills up the mold cavity. The gas constant is the most effective factor for simulating this gas generated from sand cores. It is calculated by gas generating temperature and analysis of composition in the inert gas atmosphere modified according to the mold filling conditions of molten metal. It is assumed that gases generated from the inside of castings remain if the following formula is established. [Time of occurrence of gas generation] + [Time of occurrence of gas floating] > [Time of occurrence of casting surface solidification] The possibility of gas defects is evaluated by the time of occurrence of gas generation and gas floating calculated using the gas constant. The residual position of generated gases is decided by the closed loops indicating the final solidification location in the casting simulation. The above procedure enables us to suggest suitable casting designs with zero gas defects, without the need to repeat casting tests.

Cointegration based modeling and anomaly detection approaches using monitoring data of a suspension bridge

  • Ziyuan Fan;Qiao Huang;Yuan Ren;Qiaowei Ye;Weijie Chang;Yichao Wang
    • Smart Structures and Systems
    • /
    • v.31 no.2
    • /
    • pp.183-197
    • /
    • 2023
  • For long-span bridges with a structural health monitoring (SHM) system, environmental temperature-driven responses are proved to be a main component in measurements. However, anomalous structural behavior may be hidden incomplicated recorded data. In order to receive reliable assessment of structural performance, it is important to study therelationship between temperature and monitoring data. This paper presents an application of the cointegration based methodology to detect anomalies that may be masked by temperature effects and then forecast the temperature-induced deflection (TID) of long-span suspension bridges. Firstly, temperature effects on girder deflection are analyzed with fieldmeasured data of a suspension bridge. Subsequently, the cointegration testing procedure is conducted. A threshold-based anomaly detection framework that eliminates the influence of environmental temperature is also proposed. The cointegrated residual series is extracted as the index to monitor anomaly events in bridges. Then, wavelet separation method is used to obtain TIDs from recorded data. Combining cointegration theory with autoregressive moving average (ARMA) model, TIDs for longspan bridges are modeled and forecasted. Finally, in-situ measurements of Xihoumen Bridge are adopted as an example to demonstrate the effectiveness of the cointegration based approach. In conclusion, the proposed method is practical for actual structures which ensures the efficient management and maintenance based on monitoring data.

Determining the adjusting bias in reactor pressure vessel embrittlement trend curve using Bayesian multilevel modelling

  • Gyeong-Geun Lee;Bong-Sang Lee;Min-Chul Kim;Jong-Min Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.8
    • /
    • pp.2844-2853
    • /
    • 2023
  • A sophisticated Bayesian multilevel model for estimating group bias was developed to improve the utility of the ASTM E900-15 embrittlement trend curve (ETC) to assess the conditions of nuclear power plants (NPPs). For multilevel model development, the Baseline 22 surveillance dataset was basically classified into groups based on the NPP name, product form, and notch orientation. By including the notch direction in the grouping criteria, the developed model could account for TTS differences among NPP groups with different notch orientations, which have not been considered in previous ETCs. The parameters of the multilevel model and biases of the NPP groups were calculated using the Markov Chain Monte Carlo method. As the number of data points within a group increased, the group bias approached the mean residual, resulting in reduced credible intervals of the mean, and vice versa. Even when the number of surveillance test data points was less than three, the multilevel model could estimate appropriate biases without overfitting. The model also allowed for a quantitative estimate of the changes in the bias and prediction interval that occurred as a result of adding more surveillance test data. The biases estimated through the multilevel model significantly improved the performance of E900-15.

Development of Deterioration Prediction Model and Reliability Model for the Cyclic Freeze-Thaw of Concrete Structures (콘크리트구조물의 반복적 동결융해에 대한 수치 해석적 열화 예측 및 신뢰성 모델 개발)

  • Cho, Tae-Jun;Kim, Lee-Hyeon;Cho, Hyo-Nam
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.1
    • /
    • pp.13-22
    • /
    • 2008
  • The initiation and growth processes of cyclic ice body in porous systems are affected by the thermo-physical and mass transport properties, as well as gradients of temperature and chemical potentials. Furthermore, the diffusivity of deicing chemicals shows significantly higher value under cyclic freeze-thaw conditions. Consequently, the disintegration of concrete structures is aggravated at marine environments, higher altitudes, and northern areas. However, the properties of cyclic freeze-thaw with crack growth and the deterioration by the accumulated damages are hard to identify in tests. In order to predict the accumulated damages by cyclic freeze-thaw, a regression analysis by the response surface method (RSM) is used. The important parameters for cyclic freeze-thawdeterioration of concrete structures, such as water to cement ratio, entrained air pores, and the number of cycles of freezing and thawing, are used to compose the limit state function. The regression equation fitted to the important deterioration criteria, such as accumulated plastic deformation, relative dynamic modulus, or equivalent plastic deformations, were used as the probabilistic evaluations of performance for the degraded structural resistance. The predicted results of relative dynamic modulus and residual strains after 300 cycles of freeze-thaw show very good agreements with the experimental results. The RSM result can be used to predict the probability of occurrence for designer specified critical values. Therefore, it is possible to evaluate the life cycle management of concrete structures considering the accumulated damages due to the cyclic freeze-thaw using the proposed prediction method.

Correlation Analysis and Growth Prediction between Climatic Elements and Radial Growth for Pinus koraiensis (잣나무 연륜생장과 기후요소와의 상관관계 분석 및 생장예측)

  • Chung, Junmo;Kim, Hyunseop;Lee, Sangtae;Lee, Kyungjae;Kim, Meesook;Chun, Yongwoo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.17 no.2
    • /
    • pp.85-92
    • /
    • 2015
  • This study was conducted to analyze the relationship among climatic factors and radial growth of Pinus koraiensis in South Korea. To determine climate-growth relationships, cluster analysis was applied to group climatically similar surveyed regions, and dendroclimatological model was developed to predict radial growth for each climate group under the RCP 4.5 and RCP 8.5 scenarios for greenhouse gases. The dendroclimatological models were developed through climatic variables and standardized residual chronology for each climatic cluster of P. koraiensis. 2 to 4 climatic variables were used in the models ($R^2$ values between 0.35~0.49). For each of the climatic clusters for Pinus koraiensis, the growth simulations obtained from two RCP climate-change scenarios were used for growth prediction. The radial growth of the Clusters 2 and 3, which grow at high elevation, tend to increase. In contrast, Cluster 1, which grows at low elevation, tends to decrease with a large difference. Thus, the growth of Pinus koraiensis, which is a boreal species, could increase along with increasing temperature up to a certain point.

Nonlinear Autoregressive Modeling of Southern Oscillation Index (비선형 자기회귀모형을 이용한 남방진동지수 시계열 분석)

  • Kwon, Hyun-Han;Moon, Young-Il
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.12 s.173
    • /
    • pp.997-1012
    • /
    • 2006
  • We have presented a nonparametric stochastic approach for the SOI(Southern Oscillation Index) series that used nonlinear methodology called Nonlinear AutoRegressive(NAR) based on conditional kernel density function and CAFPE(Corrected Asymptotic Final Prediction Error) lag selection. The fitted linear AR model represents heteroscedasticity, and besides, a BDS(Brock - Dechert - Sheinkman) statistics is rejected. Hence, we applied NAR model to the SOI series. We can identify the lags 1, 2 and 4 are appropriate one, and estimated conditional mean function. There is no autocorrelation of residuals in the Portmanteau Test. However, the null hypothesis of normality and no heteroscedasticity is rejected in the Jarque-Bera Test and ARCH-LM Test, respectively. Moreover, the lag selection for conditional standard deviation function with CAFPE provides lags 3, 8 and 9. As the results of conditional standard deviation analysis, all I.I.D assumptions of the residuals are accepted. Particularly, the BDS statistics is accepted at the 95% and 99% significance level. Finally, we split the SOI set into a sample for estimating themodel and a sample for out-of-sample prediction, that is, we conduct the one-step ahead forecasts for the last 97 values (15%). The NAR model shows a MSEP of 0.5464 that is 7% lower than those of the linear model. Hence, the relevance of the NAR model may be proved in these results, and the nonparametric NAR model is encouraging rather than a linear one to reflect the nonlinearity of SOI series.

Development of a Site Productivity Index and Yield Prediction Model for a Tilia amurensis Stand (피나무의 임지생산력지수 및 임분수확모델 개발)

  • Sora Kim;Jongsu Yim;Sunjung Lee;Jungeun Song;Hyelim Lee;Yeongmo Son
    • Journal of Korean Society of Forest Science
    • /
    • v.112 no.2
    • /
    • pp.209-216
    • /
    • 2023
  • This study aimed to use national forest inventory data to develop a forest productivity index and yield prediction model of a Tilia amurensis stand. The site index displaying the forest productivity of the Tilia amurensis stand was developed as a Schumacher model, and the site index classification curve was generated from the model results; its distribution growth in Korea ranged from 8-16. The growth model using age as an independent variable for breast height and height diameter estimation was derived from the Chapman-Richards and Weibull model. The Fitness Indices of the estimation models were 0.32 and 0.11, respectively, which were generally low values, but the estimation-equation residuals were evenly distributed around 0, so we judged that there would be no issue in applying the equation. The stand basal area and site index of the Tilia amurensis stand had the greatest effect on the stand-volume change. These two factors were used to derive the Tilia amurensis stand yield model, and the model's determination coefficient was approximately 94%. After verifying the residual normality of the equation and autocorrelation of the growth factors in the yield model, no particular problems were observed. Finally, the growth and yield models of the Tilia amurensis stand were used to produce the makeshift stand yield table. According to this table, when the Tilia amurensis stand is 70 years old, the estimated stand-volume per hectare would be approximately 208 m3 . It is expected that these study results will be helpful for decision-making of Tilia amurensis stands management, which have high value as a forest resource for honey and timber.

Development of a Water Quality Indicator Prediction Model for the Korean Peninsula Seas using Artificial Intelligence (인공지능 기법을 활용한 한반도 해역의 수질평가지수 예측모델 개발)

  • Seong-Su Kim;Kyuhee Son;Doyoun Kim;Jang-Mu Heo;Seongeun Kim
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.1
    • /
    • pp.24-35
    • /
    • 2023
  • Rapid industrialization and urbanization have led to severe marine pollution. A Water Quality Index (WQI) has been developed to allow the effective management of marine pollution. However, the WQI suffers from problems with loss of information due to the complex calculations involved, changes in standards, calculation errors by practitioners, and statistical errors. Consequently, research on the use of artificial intelligence techniques to predict the marine and coastal WQI is being conducted both locally and internationally. In this study, six techniques (RF, XGBoost, KNN, Ext, SVM, and LR) were studied using marine environmental measurement data (2000-2020) to determine the most appropriate artificial intelligence technique to estimate the WOI of five ecoregions in the Korean seas. Our results show that the random forest method offers the best performance as compared to the other methods studied. The residual analysis of the WQI predicted score and actual score using the random forest method shows that the temporal and spatial prediction performance was exceptional for all ecoregions. In conclusion, the RF model of WQI prediction developed in this study is considered to be applicable to Korean seas with high accuracy.

A Prediction Model for Forecast of the Onset Date of Changmas (장마 시작일 예측 모델)

  • Lee, Hyoun-Young;Lee, Seung-Ho
    • Journal of the Korean Geographical Society
    • /
    • v.28 no.2
    • /
    • pp.112-122
    • /
    • 1993
  • Since more than 50${\%}$ of annual precipitation in Korea falls during Changma, the rainy season of early summer, and Late Changma, the rainy season of late summer, forcasting the onset days Changmas, and the amount related rainfalls would be necessary not only for agriculture but also for flood-control. In this study the authors attempted to build a prediction model for the forecast of the onset date of Changmas. The onset data of each Changma was derived out of daily rainfall data of 47 stations for 30 years(1961~1990) and weather maps over East Asia. Each station represent any of the 47 districts of local forecast under the Korea Meteorological Administration. The average onset dates of Changma during the period was from 21 through 26 June. The dates show a tendency to be delayed in El Ni${\~{n}}o years while they come earlier than the average in La Nina years. In 1982, the year of El Ni${\~{n}}o, the date was 9 Julu, two weeks late compared with the average. The relation of sea surface temperature(SST) over Pacific and Northern hemispheric 500mb height to the Changma onset dates was analyzed for the prediction model by polynomial regression. The onset date of Changma over Korea was correlated with SST in May(SST${_(5)}{^\circ}$C) of the district (8${^\circ}$~12${^\circ}S, 136${^\circ}~148${^\circ}W)of equatirial middle Pacific and the 500mb height in March (MB${_(3)}$"\;"m)over the district of the notrhern Hudson Bay. The relation between this two elements can be expressed by the regression: Onset=5.888SST${_5}"\;"+"\;"0.047MB${_(3)}$"\;"-251.241. This equation explains 77${\%}$ of variances at the 0.01${\%}$ singificance level. The onset dates of Late Changma come in accordance with the degeneration of the Subtro-pical High over northern Pacific. They were 18 August in average for the period showing positive correlation(r=0.71) with SST in May(SST)${_(i5)}{^\circ}$C) over district of IndiaN Ocean near west coast of Australia (24${^\circ}$~32${^\circ}$S, 104${^\circ}$~112${^\circ}$E), but negativ e with SST in May(SST${_(p5)}{^\circ}$ over district (12${^\circ}$~20${^\circ}$S,"\;"136${^\circ}$~148${^\circ}$W)of equatorial mid Pacific (r=-0.70) and with the 500mb height over district of northwestern Siberia (r=-0.62). The prediction model for Late Changma can be expressed by the regression: Onset=706.314-0.080 MB-3.972SST${_(p5)}+3.896 SST${_(i5)}, which explains 64${\%}$ of variances at the 0.01${\%}$ singificance level.

  • PDF