• 제목/요약/키워드: residual prediction

검색결과 568건 처리시간 0.032초

THE MEASUREMENT OF FAT THICKNESS IN LIVE CATTLE WITH AN ULTRASONIC DEVICE AS A PREDICTOR OF CARCASS COMPOSITION

  • Mitsuhashi, T.;Mitsumoto, M.;Yamashita, Y.;Ozawa, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제3권4호
    • /
    • pp.263-267
    • /
    • 1990
  • The fat thicknesses of twenty-eight Japanese Black beef steers were measured with an ultrasonic device at eleven points on the cattle prior to slaughter and side dissection. The relation between live fat thickness and both weight and percentage of fat and lean in the carcass was examined. Fat thickness obtained from nine points of the chest, flank and rump regions was found to relate significantly (P<0.01) to both weight and percentage of fat. However, shoulder fat thickness measurements were not significantly related to the weight or percentage of fat or lean in the carcass. Addition of live fat thickness to animal age or live weight as an independent variable markedly improved the precision of multiple regression equations for predicting weight of fat and lean, and percentage of fat. In predicting the percentage of lean, both animal age and body weight were not employed in the multiple regression equation. The residual standard deviation for predicting percentage of fat and lean were 1.93 and 1.87, respectively. The ultrasonic measurement of fat thickness if supposed to be useful to the prediction of carcass composition of beef cattle.

Understanding Switching Arcs and Dielectric Capability of a SF6 Self-Blast Interrupter

  • 이원호;김철수;이종철
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.196.2-196.2
    • /
    • 2016
  • The design and development procedures of SF6 gas circuit breakers are still largely based on trial and error through testing although the development costs go higher every year. The computation cannot cover the testing satisfactorily because all the real processes arc not taken into account. But the knowledge of the arc behavior and the prediction of thermal plasmas inside SF6 interrupters by numerical simulations are more useful than those by experiments due to the difficulties to obtain physical quantities experimentally and the reduction of computational costs in recent years. In this paper, in order to get further information into the interruption process of a SF6 self-blast interrupter, which is based on the combination of thermal expansion and arc rotation, gas flow simulations with a CFD-arc modeling are performed during the whole switching process such as high-current period, pre-current zero period, and current-zero period. Through the complete work, the temperature of residual arcs as well as the breakdown index after current zero should be a good criterion to predict the dielectric capability of interrupters.

  • PDF

수소 잔존 용량에 따른 수소 탱크 충전 시간 및 온도 변화 예측 (Prediction of Changes in Filling Time and Temperature of Hydrogen Tank According to SOC of Hydrogen)

  • 이현우;오동현;서영진
    • 한국수소및신에너지학회논문집
    • /
    • 제31권4호
    • /
    • pp.345-350
    • /
    • 2020
  • Hydrogen is an green energy without pollution. Recently, fuel cell electric vehicle has been commercialized, and many studies have been conducted on hydrogen tanks for vehicles. The hydrogen tank for vehicles can be charged up to 70 MPa pressure. In this study, the change in filling time, pressure, and temperature for each hydrogen level in a 59 L hydrogen tank was predicted by numerical analysis. The injected hydrogen has the properties of real gas, the temperature is -40℃, and the mass flow rate is injected into the tank at 35 g/s. The initial tank internal temperature is 25℃. Realizable k-epsilon turbulence model was used for numerical analysis. As a result of numerical analysis, it was predicted that the temperature, charging time, and the mass of injected hydrogen increased as the residual capacity of hydrogen is smaller.

Elastic-Plastic Stress Analysis and Fatigue Lifetime Prediction of Cross-Bores in Autofrettaged Pressure Vessels

  • Koh, Seung-Kee
    • Journal of Mechanical Science and Technology
    • /
    • 제14권9호
    • /
    • pp.935-946
    • /
    • 2000
  • Elastic-plastic stress analysis has been performed to evaluate the fatigue life of an autofrettaged pressure vessel containing cross-bores subjected to pulsating internal pressure of 200 MPa. Finite element analyses were used to calculate the residual and operating stress distributions of the pressure vessel due to the autofrettage process and pulsating internal pressure, respectively. Theoretical stress concentration factors of 3.06, 2.58, and 2.64 were obtained at the cross-bore of the pressure vessel due to internal pressure, 50%, and 100% autofrettage loadings, respectively. Local stresses and local strains determined from the elastic-plastic finite element analysis were employed to calculate the failure location and fatigue life of the pressure vessel with radial cross-bores, incorporating the low-cycle fatigue properties of the pressure vessel steel and fatigue damage parameters. Increase in the amount of overstrain by autofrettage process moved the crack initiation location from the inner radius toward a mid-wall, and extended the crack initiation life. Predicted fatigue life of the fully autofrettaged pressure vessel with cross-bores increased about 50%, compared to the unautofrettaged pressure vessel. At the autofrettage level higher than 50%, the failure location and fatigue life of the pressure vessel were not significantly influenced by the autofrettage level.

  • PDF

차량용 와이어하네스의 유한요소해석을 이용한 대변형 내구수명 예측 (Life Prediction of Automotive Vehicle's W/H System Using Finite Element Analysis)

  • 김병삼;강기준;박경우;노광두
    • 한국자동차공학회논문집
    • /
    • 제18권1호
    • /
    • pp.139-144
    • /
    • 2010
  • In the automotive electronic industry, the development of vehicle's door wiring harness (W/H) system for new applications is driven continuously for the low-cost and the high strength performance for electronic components. The problem of the fatigue strength estimation for materials and components containing natural defects, inclusions, or inhomogeneities is of great importance both scientifically and industrially. This article gives some insight into the dimensioning process with special focus on the fatigue analysis of wiring harness (W/H) in vehicle's door structures. The results from endurance tests using slim test specimens were compared with the results from FEM for predicted fatigue life. The expectation for the life of components is affected by the microstructural features with complex stress state arising from the combined service loading and residual stresses.

레지듀얼 정보를 이용한 다시점 동영상 부호화의 가중치 예측 (Weighted Prediction Using Residual Information for Multi-view Video Coding)

  • 김지영;김용태;서정동;손광훈
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2007년도 동계학술대회
    • /
    • pp.9-12
    • /
    • 2007
  • 다시점 동영상 부호화기는 서로 다른 카메라에 의해 영상을 획득하므로 카메라 내부 파라미터의 차이나 조명의 차이 및 변화 등에 의한 시점 간 명도 성분의 불균형을 가지고 있다. 이로 인해 잘못된 변이 추정이 이루어질 수 있으며, 따라서 전체적인 다시점 동영상 부호화의 성능을 크게 저하시킬 수 있다. 본 논문에서는 레지듀얼이 가지고 있는 밝기 차 정보를 이용하여 시점 간의 불균형을 해소하는 가중치 예측 알고리듬을 제안한다. 주변의 인과적인 블록의 레지듀얼 정보를 이용하여 현재 블록과 참조 블록의 밝기 차를 예측하고, 이 값을 이용해 시점 간 불균형을 보정 한 후 변이 추정을 수행한다. 변이 보상 후 계산된 현재 블록의 레지듀얼 평균값을 앞에서 예측된 밝기 차의 값에 누적하여 다음 블록의 밝기 차 예측에 사용한다. 제안된 방법을 실험 영상에 적용한 결과 평균적으로 약 0.2dB의 이득을 얻었다.

  • PDF

암버력-토사 성토의 회복탄성계수 산정방법 (A Methodology to Determine Resilient Modulus for Crushed Rock-Soil Mixture)

  • 박인범;김성수;정영훈;목영진
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 추계 학술발표회
    • /
    • pp.1190-1200
    • /
    • 2010
  • A method was developed to determine resilient modulus for crushed rock-soil mixtures whose usage has been increased recently without engineering specifications. The method is based on the subtle different modulus called nonlinear dynamic modulus and was lately implemented in residual soils and engineered crushed-stones. Hereby. the same method was expanded to crushed rock-soil mixtures containing as large grain diameter as 300mm. The method utilize field direct-arival tests for the determination of maximum Young's modulus, and a large scale free-free resonant column test, which is recently developed to is capable to test as large grain diameter as 25mm, for modulus reduction curves. The prediction model of resilient modulus was evaluated for crushed rock-soil mixtures of a highway construction site at Gimcheon, Korea.

  • PDF

Punching Fracture Experiments and Simulations of Unstiffened and Stiffened Panels for Ships and Offshore Structures

  • Park, Sung-Ju;Choung, Joonmo
    • 한국해양공학회지
    • /
    • 제34권3호
    • /
    • pp.155-166
    • /
    • 2020
  • Ductile fracture prediction is critical for the reasonable damage extent assessment of ships and offshore structures subjected to accidental loads, such as ship collisions and groundings. A fracture model combining the Hosford-Coulomb ductile fracture model with the domain of solid-to-shell equivalence model (HC-SDDE), was used in fracture simulations based on shell elements for the punching fracture experiments of unstiffened and stiffened panels. The flow stress and ductile fracture characteristics of JIS G3131 SPHC steel were identified through tension tests for flat bar, notched tension bar, central hole tension bar, plane strain tension bar, and pure shear bar specimens. Punching fracture tests for unstiffened and stiffened panels are conducted to validate the presented HC-DSSE model. The calibrated fracture model is implemented in a user-defined material subroutine. The force-indentation curves and final damage extents obtained from the simulations are compared with experimental results. The HC-DSSE fracture model provides reasonable estimations in terms of force-indentation paths and residual damage extents.

Adaptive Mesh Refinement Using Viscous Adjoint Method for Single- and Multi-Element Airfoil Analysis

  • Yamahara, Toru;Nakahashi, Kazuhiro;Kim, Hyoungjin
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제18권4호
    • /
    • pp.601-613
    • /
    • 2017
  • An adjoint-based error estimation and mesh adaptation study is conducted for two-dimensional viscous flows on unstructured hybrid meshes. The error in an integral output functional of interest is estimated by a dot product of the residual vector and adjoint variable vector. Regions for the mesh to be adapted are selected based on the amount of local error at each nodal point. Triangular cells in the adaptive regions are refined by regular refinement, and quadrangular cells near viscous walls are bisected accordingly. The present procedure is applied to single-element airfoils such as the RAE2822 at a transonic regime and a diamond-shaped airfoil at a supersonic regime. Then the 30P30N multi-element airfoil at a low subsonic regime with a high incidence angle (${\alpha}=21deg.$) is analyzed. The same level of prediction accuracy for lift and drag is achieved with much less mesh points than the uniform mesh refinement approach. The detailed procedure of the adjoint-based mesh refinement for the multi-element airfoil case show that the basic flow features around the airfoil should be resolved so that the adjoint method can accurately estimate an output error.

Simulate Reality - Deliver Certainty Through the Virtual Weld

  • Bernhardt, Ralph;Schafstall, Hendrik;Hwang, Inhyuck
    • Journal of Welding and Joining
    • /
    • 제34권5호
    • /
    • pp.41-46
    • /
    • 2016
  • Welding is an absolutely essential component of industries such as the automotive industry, the construction industry and even the aviation industry. Although it is a widespread technology it is still characterized by lots of uncertainties. This still requires well experienced and highly skilled workforce to design and perform safe welding processes. The early knowledge of distortion and residual stresses is almost an issue which is influenced mainly by the welding parameters and the fixture design. But more and more engineers want to know as well final properties of the assembled components. With the beginning of the computer age in the 1970s and 1980s last century, the numerical prediction of manufacturing processes using FEM was gradually getting better and has established itself in the industry since the 1990s as a standard tool. Unlike in metal casting and forming industry, however, the everyday use of FEM- simulation tools for welding processes eked out a shadowy existence for a long time. This paper will give a short classification of welding simulation types and a structured overview on the technical questions. Selected case studies and the benefits achieved through simulations with the software Simufact welding are discussed. Finally an outlook on future developments will be given.