• Title/Summary/Keyword: residual prediction

Search Result 566, Processing Time 0.028 seconds

The Finite Element Analysis for Prediction of Residual Stresses Induced by Shot Peening (쇼트피닝 잔류응력 예측을 위한 유한요소해석)

  • Kim, Cheol;Yang, Won-Ho;Sung, Ki-Deug;Cho, Myoung-Rae;Ko, Myung-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.218-223
    • /
    • 2000
  • The shot peening is largely used for a surface treatment in which small spherical parts called shots are blasted on a surface of a metallic components with velocities up to 100m/s. This treatment leads to an improvement of fatigue behavior due to the developed compressive residual stresses, and so it has gained widespread acceptance in the automobile and aerospace industries. The residual stress profile on surface layer depends on the parameters of shot peening, which are, shot velocity, shot diameter, coverage, impact angle, material properties etc. and the method to confirm this profile is only measurement by X-ray diffractometer. Despite its importance to automobile and aerospace industries, little attention has been devoted to the accurate modelling of the process. In this paper, the simulation technique is applied to predict the magnitude and distribution of the residual stress and plastic deformation caused by shot peening with the help of the finite element analysis.

  • PDF

Prediction of Welding Residual Stress of Dissimilar Metal Weld of Nozzle using Finite Element Analyses (유한요소해석을 이용한 노즐 이종금속용접부의 용접잔류응력 예측)

  • Huh, Nam-Su;Kim, Jong-Wook;Choi, Suhn;Kim, Tae-Wan
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.83-84
    • /
    • 2008
  • The primary water stress corrosion cracking (PWSCC) of dissimilar metal weld based on Alloy 82/182 is one of major issues in material degradation of nuclear components. It is well known that the crack initiation and growth due to PWSCC is influenced by material's susceptibility to PWSCC and distribution of welding residual stress. Therefore, modeling the welding residual stress is of interest in understanding crack formation and growth in dissimilar metal weld. Currently in Korea, a numerical round robin study is undertaken to provide guidance on the welding residual stress analysis of dissimilar metal weld. As a part of this effort, the present paper investigates distribution of welding resisual stress of a ferritic low alloy steel nozzle with dissimilar metal weld using Alloy 82/182. Two-dimensional thermo-mechanical finite element analyses are carried out to simulate multi-pass welding process on the basis of the detailed design and fabrication data. The present results are compared with those from other participants, and more works incorporating physical measurements are going to be performed to quantify the uncertainties relating to modelling assumptions.

  • PDF

The Solution of Peening Residual Stress by Angled Impact of Multi Elliptical Shot Ball Based on Finite Element Analysis (유한요소해석에 기초한 다중 타원구 숏볼의 경사충돌에 의해 생성된 피닝잔류응력해)

  • Kim, Taehyung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.34 no.2
    • /
    • pp.151-156
    • /
    • 2017
  • Shot peening is widely used to improve the fatigue life and strength of various mechanical parts and an accurate method is important for the prediction of the compressive residual stress caused by this process. A finite element (FE) model with an elliptical multi-shot is suggested for random-angled impacts. Solutions for compressive residual stress using this model and a normal random vertical-impact one with a spherical multi-shot are obtained and compared. The elliptical multi-shot experimental solution is closer to an X-ray diffraction (XRD) than the spherical one. The FE model's peening coverage also almost reaches the experimental one. The effectiveness of the model based on an elliptical shot ball is confirmed by these results and it can be used instead of previous FE models to evaluate the compressive residual stress produced on the surface of metal by shot peening in various industries.

Stress Analysis and Residual Life Assessment of T-piece of High Temperature Pipe (고온배관 T-부의 응력해석 및 잔여수명평가)

  • Kwon, Yang-Mi;Ma, Young-Wha;Cho, Seong-Wook;Yoon, Kee-Bong
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.3 s.71
    • /
    • pp.34-41
    • /
    • 2005
  • For assessing residual lift of the steam pipe in fossil power plants, inspections and analysis are usually focused on the critical locations such as butt welds, elbows, Y-piece and T-piece of the steam pipes. In predicting the residual life of T-piece, determination of local stress near welds considering system load as well as internal pressure is not a simple problem. In this study, stress analysis of a T-piece pipe was conducted using a three-dimensional model which represents the T-piece of a domestic fossil power station. Elastic and elastic-creep analysis showed the maximum stress level and its location. Residual creep rupture life was also calculated using the stress analysis results. It was argued that the calculated life is reasonably same as the measured one. The stress analysis results also support life prediction methodology based on in-field replication technique.

Prediction of mechanical properties of limestone concrete after high temperature exposure with artificial neural networks

  • Blumauer, Urska;Hozjan, Tomaz;Trtnik, Gregor
    • Advances in concrete construction
    • /
    • v.10 no.3
    • /
    • pp.247-256
    • /
    • 2020
  • In this paper the possibility of using different regression models to predict the mechanical properties of limestone concrete after exposure to high temperatures, based on the results of non-destructive techniques, that could be easily used in-situ, is discussed. Extensive experimental work was carried out on limestone concrete mixtures, that differed in the water to cement (w/c) ratio, the type of cement and the quantity of superplasticizer added. After standard curing, the specimens were exposed to various high temperature levels, i.e., 200℃, 400℃, 600℃ or 800℃. Before heating, the reference mechanical properties of the concrete were determined at ambient temperature. After the heating process, the specimens were cooled naturally to ambient temperature and tested using non-destructive techniques. Among the mechanical properties of the specimens after heating, known also as the residual mechanical properties, the residual modulus of elasticity, compressive and flexural strengths were determined. The results show that residual modulus of elasticity, compressive and flexural strengths can be reliably predicted using an artificial neural network approach based on ultrasonic pulse velocity, residual surface strength, some mixture parameters and maximal temperature reached in concrete during heating.

Residual ultimate strength of a very large crude carrier considering probabilistic damage extents

  • Choung, Joonmo;Nam, Ji-Myung;Tayyar, Gokhan Tansel
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.1
    • /
    • pp.14-26
    • /
    • 2014
  • This paper provides the prediction of ultimate longitudinal strengths of the hull girders of a very large crude carrier considering probabilistic damage extent due to collision and grounding accidents based on IMO Guidelines (2003). The probabilistic density functions of damage extent are expressed as a function of non-dimensional damage variables. The accumulated probabilistic levels of 10%, 30%, 50%, and 70% are taken into account for the estimation of damage extent. The ultimate strengths have been calculated using the in-house software called Ultimate Moment Analysis of Damaged Ships which is based on the progressive collapse method, with a new convergence criterion of force vector equilibrium. Damage indices are provided for several probable heeling angles from $0^{\circ}$ (sagging) to $180^{\circ}$ (hogging) due to collision- and grounding-induced structural failures and consequent flooding of compartments. This paper proves from the residual strength analyses that the second moment of area of a damage section can be a reliable index for the estimation of the residual ultimate strength. A simple polynomial formula is also proposed based on minimum residual ultimate strengths.

Characteristics of Luminescence Signals According to the Depositional Environment (퇴적 환경에 따른 루미네선스 신호의 특성)

  • Hong, Seongchan;Choi, Kwang Hee
    • Journal of The Geomorphological Association of Korea
    • /
    • v.28 no.2
    • /
    • pp.59-70
    • /
    • 2021
  • This study aims to determine the sunlight exposure according to depositional environment to improve the accuracy of optically simulated luminescence (OSL) dating. Sufficient sunlight exposure during transportation of sediment is a basic assumption of the OSL dating, and if the process does not occur enough, the results may be overestimated compared to the actual depositional age. Therefore, the main purpose of this study is to establish a correction method by determining residual or unbleachable dose after sunlight exposure in the actual deposition process, not in the laboratory measurement. Four samples from two sites were collected according to the depositional environment from rivers and coasts, and various OSL signals, including the size of residual dose, degree of dispersion between grains, and OSL signal sensitivity, were measured. As a result, it was confirmed that sediments formed under temporarily high energy environments, such as floods and surges, had relatively high residual dose or large dispersion of residual dose between particles. In further studies, the OSL signal characteristics of river sediments by flow velocity will be identified and the relationship between energy and OSL signal characteristics will be identified in more detail. Moreover, a method of reconstructing the paleo-environment at the time of deposition for existing sediments will be devised. It is expected to provide important information for the frequency of disaster recurrence and prediction of future climate change.

Lossless Compression Algorithm using Spatial and Temporal Information (시간과 공간정보를 이용한 무손실 압축 알고리즘)

  • Kim, Young Ro;Chung, Ji Yung
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.5 no.3
    • /
    • pp.141-145
    • /
    • 2009
  • In this paper, we propose an efficient lossless compression algorithm using spatial and temporal information. The proposed method obtains higher lossless compression of images than other lossless compression techniques. It is divided into two parts, a motion adaptation based predictor part and a residual error coding part. The proposed nonlinear predictor can reduce prediction error by learning from its past prediction errors. The predictor decides the proper selection of the spatial and temporal prediction values according to each past prediction error. The reduced error is coded by existing context coding method. Experimental results show that the proposed algorithm has better performance than those of existing context modeling methods.

Prediction of Chlorine Concentration in a Pilot-Scaled Plant Distribution System (Pilot 규모의 모의 관망에서의 염소 농도 예측)

  • Kim, Hyun Jun;Kim, Sang Hyun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.6
    • /
    • pp.861-869
    • /
    • 2012
  • The chlorine's residual concentration prevents the regrowth of microorganism in water transport along the pipeline system. Precise prediction of chlorine concentration is important in determining disinfectant injection for the water distribution system. In this study, a pilot scale water distribution system was designed and fabricated to measure the temporal variation of chlorine concentration for three flow conditions (V = 0.88, 1.33, 1.95 m/s). Various kinetic models were applied to identify the relationship between hydraulic condition and chlorine decay. Genetic Algorithm (GA) was integrated into five kinetic models and time series of chlorine were used to calibrate parameters. Model fitness was compared by Root Mean Square Error (RMSE) between measurement and prediction. Limited first order model and Parallel first order showed good fitness for prediction of chlorine concentration.

PREDICTION OF RESIDUAL STRESS PROFILE IN SINGLE-SIDED BUTT WELD USING COMPLIANCE METHOD

  • Kim, Yooil;Jeon, Yu-Chul;Kang, Joong-Kyoo;Han, Yong-Sub
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.156-161
    • /
    • 2002
  • It depends on the joint configuration, dimensions and constraints on the joint whether the residual stress at the root of single-sided butt weld is tensile or not. Therefore, recommendation is generally made that high R ratio should be used in the fatigue test of this type of joint in order to prevent excessively long life caused by compressive residual stress. in this research, the residual stress profile in butt weld joint was obtained through compliance method, using successive extension of a slot and measurement of the variation of strain during the slot extension. The residual stress profile was firstly assumed to be the linear summation of Legendre polynomials up to 9th order excluding 0th and 1st order. Strain variation on the surface was measured while the slot was being extended by cutting to find out the 8 unknown coefficients of each polynomial tenn. The cut was made by the electric discharge machine. It was concluded that the residual stress near the surface stayed positive, however, it turned into the negative value as soon as it passed through 2 or 3 mm depth. Several fatigue tests were also carried out under zero stress ratio. Test results showed that fatigue life coincides well with the design cuive of butt joint in British Standards, which supports that it is tensile residual stress that exists near the weld root.

  • PDF