• Title/Summary/Keyword: residual networks

Search Result 226, Processing Time 0.027 seconds

Fuzzy Logic Approach to Zone-Based Stable Cluster Head Election Protocol-Enhanced for Wireless Sensor Networks

  • Mary, S.A. Sahaaya Arul;Gnanadurai, Jasmine Beulah
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.4
    • /
    • pp.1692-1711
    • /
    • 2016
  • Energy is a scarce resource in wireless sensor networks (WSNs). A variety of clustering protocols for WSNs, such as the zone-based stable election protocol-enhanced (ZSEP-E), have been developed for energy optimization. The ZSEP-E is a heterogeneous zone-based clustering protocol that focuses on unbalanced energy consumption with parallel formation of clusters in zones and election of cluster heads (CHs). Most ZSEP-E research has assumed probabilistic election of CHs in the zones by considering the maximum residual energy of nodes. However, studies of the diverse CH election parameters are lacking. We investigated the performance of the ZSEP-E in such scenarios using a fuzzy logic approach based on three descriptors, i.e., energy, density, and the distance from the node to the base station. We proposed an efficient ZSEP-E scheme to adapt and elect CHs in zones using fuzzy variables and evaluated its performance for different energy levels in the zones.

Numerical Study to Design an Optical Node for Metropolitan Networks

  • Lee, Jong-Hyung
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.11 no.4
    • /
    • pp.43-48
    • /
    • 2019
  • We design a reconfigurable optical node for metropolitan WDM networks, and numerically study the capability of the node in the optical signal level. Unlike a long-haul WDM system, major limitations of metropolitan WDM systems are power loss, fiber dispersion and optical signal-to-noise ratio(OSNR) degradation due to EDFAs. Therefore, we include the behaviors of transmitter and receiver, and fiber, EDFAs, and optical filters(MUX/DeMux) in numerical simulations with varying parameters over wide range. From simulation results, we can identify the maximum span numbers for OC-48 and OC-192 to achieve $BER<10^{-12}$ using the node structure at various received powers and residual dispersions.

A Novel Improved Energy-Efficient Cluster Based Routing Protocol (IECRP) for Wireless Sensor Networks

  • Inam, Muhammad;Li, Zhuo;Zardari, Zulfiqar Ali
    • Journal of information and communication convergence engineering
    • /
    • v.19 no.2
    • /
    • pp.67-72
    • /
    • 2021
  • Wireless sensor networks (WSNs) require an enormous number of sensor nodes (SNs) to maintain processing, sensing, and communication capabilities for monitoring targeted sensing regions. SNs are generally operated by batteries and have a significantly restricted energy consumption; therefore, it is necessary to discover optimization techniques to enhance network lifetime by saving energy. The principal focus is on reducing the energy consumption of packet sharing (transmission and receiving) and improving the network lifespan. To achieve this objective, this paper presents a novel improved energy-efficient cluster-based routing protocol (IECRP) that aims to accomplish this by decreasing the energy consumption in data forwarding and receiving using a clustering technique. Doing so, we successfully increase node energy and network lifetime. In order to confirm the improvement of our algorithm, a simulation is done using matlab, in which analysis and simulation results show that the performance of the proposed algorithm is better than that of two well-known recent benchmarks.

A Low Overhead, Energy Efficient, Sink-initiated Multipath Routing Protocol for Static Wireless Sensor Networks

  • Razzaque, Md. Abdur;Hong, Choong Seon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2009.04a
    • /
    • pp.1167-1169
    • /
    • 2009
  • Multipath routing in wireless sensor networks has been proven to provide with increased data delivery ratio, security, robustness to node and link failures, network throughput, etc. However, the energy cost for multiple routes construction and their maintenance is very high. This paper proposes a sink-initiated, node-disjoint multipath routing protocol for static wireless sensor networks that significantly minimizes the route construction messages and thereby saves the critical batter energy of sensor nodes. It also distributes the traffic load spatially over many nodes in the forwarding paths, which ensures balanced energy consumption in the network and thereby increases the network lifetime. The simulation results show that it decreases the routing overhead as well as the standard deviation of nodes' residual energies.

Energy-aware Tree Routing Protocol for Wireless Sensor Networks (센서 네트워크에서 에너지 효율성을 고려한 트리 라우팅 프로토콜)

  • Hwang, So-Young;Jin, Gwang-Ja;Shin, Chang-Sub;Kim, Bong-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.8B
    • /
    • pp.624-629
    • /
    • 2008
  • Many routing protocols have been proposed for sensor networks where energy awareness and reliability are essential design issues. This paper proposes an Energy-aware Tree Routing Protocol (ETRP) for Wireless Sensor Networks. The proposed scheme relates to reliable and energy efficient data routing by selecting a data transmission path in consideration of residual energy at each node to disperse energy consumption across the networks and reliably transmit the data through a detour path when there is link or node failure. Simulation results show that the proposed method outperformed traditional Tree Routing (TR) by 23.5% in network lifetime.

An Energy-Efficient Clustering Scheme in Underwater Acoustic Sensor Networks (수중음향 센서 네트워크에서 효율적인 저전력 군집화 기법)

  • Lee, Jae-Hun;Seo, Bo-Min;Cho, Ho-Shin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.33 no.5
    • /
    • pp.341-350
    • /
    • 2014
  • In this paper, an energy efficient clustering scheme using self organization method is proposed. The proposed scheme selects a cluster head considering not only the number of neighbor nodes but also the residual battery amount. In addition, the network life time is extended by re-selecting the cluster heads only in case the current cluster head's residual energy falls down below a certain threshold level. Accordingly, the energy consumption is evenly distributed over the entire network nodes. The cluster head delivers the collected data from member nodes to a Sink node in a way of multi-hop relaying. In order to evaluate the proposed scheme, we run computer simulation in terms of the total residual amount of battery, the number of alive nodes after a certain amount of time, the accumulated energy cost for network configuration, and the deviation of energy consumption of all nodes, comparing with LEACH which is one of the most popular network clustering schemes. Numerical results show that the proposed scheme has twice network life-time of LEACH scheme and has much more evenly distributed energy consumption over the entire network.

A Proactive Dissemination Protocol using Residual Energy and Signal Strength for WSNs (무선 센서 네트워크에서 에너지 잔량과 신호세기를 이용한 데이터 전송 프로토콜)

  • Park, Soo-Yeon;Kim, Moon-Seong;Jeong, Eui-Hoon;Bang, Young-Cheo
    • Journal of Internet Computing and Services
    • /
    • v.11 no.4
    • /
    • pp.33-39
    • /
    • 2010
  • In this paper, a data dissemination protocol that transmits data collected for Wireless Sensor Networks (WSNs) is newly proposed, and the proposed proactive protocol takes into account energy consumption minimized and delay time disseminated. The well-known SPMS (Shortest Path Mined SPIN) forms the shortest path-based routing table obtained by Bellman Ford Algorithm (BFA) and disseminates data using a multi-hop path in order to minimize energy consumption. The mentioned properties of SPMS cause memory burden to create and maintain the routing tables. In addition, whenever BFA is executed, it is necessary to suffer from the energy consumption and traffic occurred. In order to overcome this problem, a proactive dissemination protocol using Residual Energy and Signal Strength, called RESS, is proposed in this paper. Simulation results show that RESS outperforms SPMS up to 84% in terms of the number of traffic messages and the transmitted delay time of RESS is similar to that of SPMS using the shortest path.

A Residual Ionospheric Error Model for Single Frequency GNSS Users in the Korean Region (한국지역에서의 단일주파수 GNSS 사용자를 위한 전리층 잔류 오차 모델 개발)

  • Yoon, Moonseok;Ahn, Jongsun;Joo, Jung -Min
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.3
    • /
    • pp.194-202
    • /
    • 2021
  • Ionosphere, one of the largest error sources, can pose potentially harmful threat to single-frequency GNSS (global navigation satellite system) user even after applying ionospheric corrections to their GNSS measurements. To quantitatively assess ionospheric impacts on the satellite navigation-based applications using simulation, the standard deviation of residual ionospheric errors is needed. Thus, in this paper, we determine conservative statistical quantity that covers typical residual ionospheric errors for nominal days. Extensive data-processing computes TEC (total electron content) estimates from GNSS measurements collected from the Korean reference station networks. We use Klobuchar model as a correction to calculate residual ionospheric errors from TEC (total electron content) estimate. Finally, an exponential delay model for residual ionospheric errors is presented as a function of local time and satellite elevation angle.

A Sensor nodes' Residual Energy based Wake-up Control Mechanism in Wireless Sensor Networks (무선 센서 네트워크에서 센서 노드의 잔여 에너지 기반 Wake-up 제어 메커니즘)

  • Jeon, Jun-Heon;Kim, Seong-Cheol
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.1
    • /
    • pp.187-192
    • /
    • 2017
  • In dense deployments of sensor nodes in Wireless Sensor Networks, the MAC protocol has challenges to solve problems such as reducing delivery delay and reducing energy consumption. To solve these problems lots of protocols are suggested. This paper proposed a sensor nodes' residual energy based wake-up control mechanism, in which each node decides whether it wakes up or stays in sleep mode to save energy consumption by reducing unnecessary idle listening. The main idea of the wake-up control mechanism is to save node's energy consumption. The proposed wake-up control mechanism is based on the RI-MAC protocol, which is one of the receiver-initiated MAC protocols. A receiver node in the proposed mechanism periodically wakes up and broadcasts a beacon signal based on the energy status of the node. A receiver node also adjusts wake-up period based on the traffics. Results have shown that the proposed MAC protocol outperformed RI-MAC protocol in the terms of energy consumption.

Power-aware Relay Selection Algorithm for Cooperative Diversity in the Energy-constrained Wireless Sensor Networks (전력 제한된 무선 센서네트워크에서 협력 다이버시티를 위한 전력인지 릴레이 선택 알고리즘)

  • Xiang, Gao;Park, Hyung-Kun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.10A
    • /
    • pp.752-759
    • /
    • 2009
  • Cooperative diversity is an effective technique to combat multi-path fading. When this technique is applied to energy-constrained wireless sensor networks, it is a key issue to design appropriate relay selection and power allocation strategies. In this paper, we proposed a new multi-relay selection and power allocation algorithm to maximize network lifetime. The algorithm are composed of two relay selection stages, where the channel condition and residual power of each node were considered in multi-relay selection and the power is fairly allocated proportional to the residual power, satisfies the required SNR at destination and minimizes the total transmit power. In this paper, proposed algorithm is based on AF (amplify and forward) model. We evaluated the proposed algorithm by using extensive simulation and simulation results show that proposed algorithm obtains much longer network lifetime than the conventional algorithm.