• 제목/요약/키워드: residual networks

검색결과 226건 처리시간 0.021초

A Technique to Exploit Cooperation for Packet Retransmission in Wireless Ad Hoc Networks

  • Kim, Hae-Soo;Buehrer, R. Michael
    • Journal of Communications and Networks
    • /
    • 제10권2호
    • /
    • pp.148-155
    • /
    • 2008
  • In wireless data communication systems, retransmission of an erroneous packet is inevitable due to the harsh communication environment. In this paper, an efficient retransmission scheme using cooperation from neighboring nodes is investigated. In the cooperative retransmission scheme, an erroneous packet is transmitted to the destination by cooperative nodes which have favorable channels. This cooperative retransmission scheme requires no a priori information of neighboring nodes and has no limitation on the number of cooperating nodes. Distributed beamforming is used to accommodate multiple cooperating nodes. Phase and frequency offsets of cooperating signals are extracted from the NACK message and used to co-phase retransmitted data packets. The outage probability of the cooperative retransmission scheme is analyzed for the case of perfect synchronization and when the offsets are estimated. To reduce the impact of the residual phase and frequency offsets in cooperating signals, a low-rate feedback scheme is also investigated. It is shown that improved outage probability and reduced packet error rate (PER) performance can be achieved even for long data packets. The proposed cooperative retransmission scheme is found to outperform simple retransmission by the source as well as decode-and-forward cooperation.

에너지 수집형 무선 센서 네트워크를 위한 에너지 적응형 데이터 압축 및 전송 범위 결정 기법 (Energy-Aware Data Compression and Transmission Range Control Scheme for Energy-Harvesting Wireless Sensor Networks)

  • 이준민;오엄지;노동건;윤익준
    • 대한임베디드공학회논문지
    • /
    • 제11권4호
    • /
    • pp.243-249
    • /
    • 2016
  • Energy-harvesting nodes in wireless sensor networks(WSNs) can be exhausted due to a heavy workload even though they can harvest energy from their environment. On contrast, they can sometimes fully charged, thus waste the harvested energy due to the limited battery-capacity. In order to utilize the harvested energy efficiently, we introduce a selective data compression and transmission range control scheme for energy-harvesting nodes. In this scheme, if the residual energy of a node is expected to run over the battery capacity, the node spends the surplus energy to exploit the data compression or the transmission range expansion; these operations can reduce the burden of intermediate nodes at the expanse of its own energy. Otherwise, the node performs only basic operations such as sensing or transmitting so as to avoid its blackout time. Simulation result verifies that the proposed scheme gathers more data with fewer number of blackout nodes than other schemes by consuming energy efficiently.

무선 센서 네트워크에서 유전 알고리즘 기반의 에너지 효율적인 클러스터링 (An Energy Efficient Clustering based on Genetic Algorithm in Wireless Sensor Networks)

  • 김진수
    • 한국산학기술학회논문지
    • /
    • 제11권5호
    • /
    • pp.1661-1669
    • /
    • 2010
  • 본 논문에서는 센서 네트워크의 수명을 길게 하기 위해 클러스터 헤드에 집중된 에너지 과부하를 클러스터 그룹 헤드와 클러스터 헤드로 분산시켜서 에너지 소모량을 감소시키는 유전 알고리즘 기반의 에너지 효율적인 클러스터링(ECGA: Energy efficient Clustering based on Genetic Algorithm)을 제안한다. ECGA 알고리즘은 예상 에너지 비용 합계, 센서 노드 에너지 잔량의 평균 및 표준 편차를 구하여 이를 적합도 함수에 적용하였다. 이 적합도를 이용하여 최적의 클러스터 그룹 및 클러스터를 형성한다. 실험을 통하여 ECGA 알고리즘이 이전의 클러스터링 기법보다 에너지 소모를 줄이고 네트워크의 수명을 연장시켰음을 보였다.

Energy Efficiency Enhancement of TICK -based Fuzzy Logic for Selecting Forwarding Nodes in WSNs

  • Ashraf, Muhammad;Cho, Tae Ho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권9호
    • /
    • pp.4271-4294
    • /
    • 2018
  • Communication cost is the most important factor in Wireless Sensor Networks (WSNs), as exchanging control keying messages consumes a large amount of energy from the constituent sensor nodes. Time-based Dynamic Keying and En-Route Filtering (TICK) can reduce the communication costs by utilizing local time values of the en-route nodes to generate one-time dynamic keys that are used to encrypt reports in a manner that further avoids the regular keying or re-keying of messages. Although TICK is more energy efficient, it employs no re-encryption operation strategy that cannot determine whether a healthy report might be considered as malicious if the clock drift between the source node and the forwarding node is too large. Secure SOurce-BAsed Loose Synchronization (SOBAS) employs a selective encryption en-route in which fixed nodes are selected to re-encrypt the data. Therefore, the selection of encryption nodes is non-adaptive, and the dynamic network conditions (i.e., The residual energy of en-route nodes, hop count, and false positive rate) are also not focused in SOBAS. We propose an energy efficient selection of re-encryption nodes based on fuzzy logic. Simulation results indicate that the proposed method achieves better energy conservation at the en-route nodes along the path when compared to TICK and SOBAS.

Reducing Outgoing Traffic of Proxy Cache by Using Client-Cluster

  • Kim Kyung-Baek;Park Dae-Yeon
    • Journal of Communications and Networks
    • /
    • 제8권3호
    • /
    • pp.330-338
    • /
    • 2006
  • Many web cache systems and policies concerning them have been proposed. These studies, however, consider large objects less useful than small objects in terms of performance, and evict them as soon as possible. Even if this approach increases the hit rate, the byte hit rate decreases and the connections occurring over congested links to outside networks waste more bandwidth in obtaining large objects. This paper puts forth a client-cluster approach for improving the web cache system. The client-cluster is composed of the residual resources of clients and utilizes them as exclusive storage for large objects. This proposed system achieves not only a high hit rate but also a high byte hit rate, while reducing outgoing traffic. The distributed hash table (DHT) based peer-to-peer lookup protocol is utilized to manage the client-cluster. With the natural characteristics of this protocol, the proposed system with the client-cluster is self-organizing, fault-tolerant, well-balanced, and scalable. Additionally, the large objects are managed with an index based allocation method, which balances the loads of all clients well. The performance of the cache system is examined via a trace driven simulation and an effective enhancement of the proxy cache performance is demonstrated.

애드혹 네트워크에서 경로 안정성 향상을 위한 라우팅 프로토콜 (A Routing Protocol for Improving Path Stability in Mobile Ad-hoc Networks)

  • 김형직;최선웅
    • 한국정보통신학회논문지
    • /
    • 제19권7호
    • /
    • pp.1561-1567
    • /
    • 2015
  • 모바일 애드혹 네트워크의 노드는 일반적으로 에너지의 용량이 제한된 배터리를 사용한다. 경로의 안정성을 유지하기 위해 균형 잡힌 에너지 소비가 중요하다. 본 논문에서는 애드혹 네트워크에서 데이터 전송 경로의 안정성을 향상시키는 것을 목표로 한다. 이를 위해 데이터를 전송할 수 있는 최단 전송 경로 중에서 노드 에너지 잔량의 최소값이 가장 큰 경로를 선택하는 새로운 라우팅 프로토콜을 제안한다. 에너지 잔량의 최소값이 가장 큰 경로는 다른 경로보다 상대적으로 긴 수명을 갖게 되어 데이터 전송에 안정성을 향상 시킬 수 있다. NS-3 시뮬레이터를 사용하여 제안하는 라우팅 프로토콜이 AODV와 EA-AODV보다 수명이 긴 안정적인 경로를 제공하는 것을 확인한다.

A Novel Bio-inspired Trusted Routing Protocol for Mobile Wireless Sensor Networks

  • Zhang, Mingchuan;Xu, Changqiao;Guan, Jianfeng;Zheng, Ruijuan;Wu, Qingtao;Zhang, Hongke
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제8권1호
    • /
    • pp.74-90
    • /
    • 2014
  • Routing in mobile wireless sensor networks (MWSNs) is an extremely challenging issue due to the features of MWSNs. In this paper, we present a novel bio-inspired trusted routing protocol (B-iTRP) based on artificial immune system (AIS), ant colony optimization (ACO) and Physarum optimization (PO). For trust mechanism, B-iTRP monitors neighbors' behavior in real time and then assesses neighbors' trusts based on AIS. For routing strategy, each node proactively finds routes to the Sink based on ACO. When a backward ant is on the way to return source, it senses the energy residual and trust value of each node on the discovered route, and calculates the link trust and link energy of the route. Moreover, B-iTRP also assesses the availability of route based on PO to maintain the route table. Simulation results show how B-iTRP can achieve the effective performance compared to existing state-of-the-art algorithms.

Application of Deep Learning to Solar Data: 6. Super Resolution of SDO/HMI magnetograms

  • Rahman, Sumiaya;Moon, Yong-Jae;Park, Eunsu;Jeong, Hyewon;Shin, Gyungin;Lim, Daye
    • 천문학회보
    • /
    • 제44권1호
    • /
    • pp.52.1-52.1
    • /
    • 2019
  • The Helioseismic and Magnetic Imager (HMI) is the instrument of Solar Dynamics Observatory (SDO) to study the magnetic field and oscillation at the solar surface. The HMI image is not enough to analyze very small magnetic features on solar surface since it has a spatial resolution of one arcsec. Super resolution is a technique that enhances the resolution of a low resolution image. In this study, we use a method for enhancing the solar image resolution using a Deep-learning model which generates a high resolution HMI image from a low resolution HMI image (4 by 4 binning). Deep learning networks try to find the hidden equation between low resolution image and high resolution image from given input and the corresponding output image. In this study, we trained a model based on a very deep residual channel attention networks (RCAN) with HMI images in 2014 and test it with HMI images in 2015. We find that the model achieves high quality results in view of both visual and measures: 31.40 peak signal-to-noise ratio(PSNR), Correlation Coefficient (0.96), Root mean square error (RMSE) is 0.004. This result is much better than the conventional bi-cubic interpolation. We will apply this model to full-resolution SDO/HMI and GST magnetograms.

  • PDF

Performance Evaluation of k-means and k-medoids in WSN Routing Protocols

  • SeaYoung, Park;Dai Yeol, Yun;Chi-Gon, Hwang;Daesung, Lee
    • Journal of information and communication convergence engineering
    • /
    • 제20권4호
    • /
    • pp.259-264
    • /
    • 2022
  • In wireless sensor networks, sensor nodes are often deployed in large numbers in places that are difficult for humans to access. However, the energy of the sensor node is limited. Therefore, one of the most important considerations when designing routing protocols in wireless sensor networks is minimizing the energy consumption of each sensor node. When the energy of a wireless sensor node is exhausted, the node can no longer be used. Various protocols are being designed to minimize energy consumption and maintain long-term network life. Therefore, we proposed KOCED, an optimal cluster K-means algorithm that considers the distances between cluster centers, nodes, and residual energies. I would like to perform a performance evaluation on the KOCED protocol. This is a study for energy efficiency and validation. The purpose of this study is to present performance evaluation factors by comparing the K-means algorithm and the K-medoids algorithm, one of the recently introduced machine learning techniques, with the KOCED protocol.

무선 센서 네트워크를 위한 잔여 수명 기반 클러스터링 통신 프로토콜 (Lifetime-based Clustering Communication Protocol for Wireless Sensor Networks)

  • 장백철
    • 한국산학기술학회논문지
    • /
    • 제15권4호
    • /
    • pp.2370-2375
    • /
    • 2014
  • 무선 센서 네트워크는 넓은 지역을 위한 분산 센싱 시스템을 구현하는 데에 큰 잠재성을 가지고 있다. 각 센서의 배터리 교환이 대체로 어렵다고 생각되기 때문에, 무선 센서 네트워크의 수명 향상은 매우 중요한 연구 주제이다. 클러스터링 방식은 각 각의 센서 노드가 패킷을 원거리의 싱크 노드에게 보낼 필요 없이, 가까운 거리의 클러스터 헤드에게 보내면 되므로 에너지 효율적이다. 이 논문에서 우리는 잔여수명을 기반으로 클러스터 헤드를 선정하는 무선 센서네트워크를 위한 클러스터링 통신 프로토콜을 제안한다. 우리가 제안한 알고리즘을 평가하기 위해, 대표적인 무선 센서네트워크 클러스터링 알고리즘 중의 하나인 LEACH와 그 성능을 비교한다. 실험 결과는 우리의 알고리즘이 LEACH보다 트래픽 양 측면에서 20% ~ 30%, 그리고 확장성 특면에서 30% ~ 40% 만큼 노드들의 평균 수명을 향상 시킨다는 것을 보여 준다.