• 제목/요약/키워드: residual fatigue life

검색결과 271건 처리시간 0.034초

현가장치재의 피로수명향상 공법개발에 관한 연구 (A Study of Development Methods of Fatigue Life Improvement for the Suspension Material)

  • 박경동;정찬기
    • 한국자동차공학회논문집
    • /
    • 제12권1호
    • /
    • pp.196-202
    • /
    • 2004
  • The development of new materials with light weight and high strength has become vital to the machinery, aircraft and auto industries. However, there are a lot of problems with developing such materials that require expensive tools, and a great deal of time and effort. Therefore, the improvement of fatigue strength and fatigue life are mainly focused on adopting residual stress(in this thesis). The compressive residual stress was imposed on the surface according to each shot velocity(57, 70, 83, 96 m/sec) based on Shot-peening, which is the method of improving fatigue life and strength. By using the methods mentioned above, the following conclusions have been drawn. 1. The fatigue crack growth rate(da/dN) of the Shot-peened material was lower than that of the Un-peened material. And in stage I, ΔKth, the threshold stress intensity factor, of the shot-peen processed material is high in critical parts unlike the Un-peened material. Also m, fatigue crack growth exponent and number of cycle of the Shot-peened material was higher than that of the Un-peened material. That is concluded from effect of da/dN. 2. Fatigue life shows more improvement in the Shot-peened material than in the Un-peened material. And compressive residual stress of surface on the Shot-peen processed operate resistance force of fatigue crack propagation.

탄소섬유/에폭시 복합재료의 잔류강도 저하해석에 의한 피로수명 평가 (Evaluation of the Fatigue Life for Carbon/Epoxy Composite Material by the Residual Strength Degradation Analysis)

  • 심봉식;성낙원;옹장우
    • 대한기계학회논문집
    • /
    • 제15권6호
    • /
    • pp.1908-1918
    • /
    • 1991
  • 본 연구에서는 피로 잔류강도저하(fatigue residual strength degradation) 개념을 이용하여 복합재료의 잔류강도와 피로수명을 예측하고 실험을 통하여 비교 평 가하였으며, 설계시 고려되어야 할 인자를 파악하여 파손방지를 위한 유한 수명설계 및 손상허용설계의 기본자료를 집적함으로서 새로운 소재인 탄소섬유 강화 복합재료의 신뢰성 향상을 위한 개발과 고강도 경량화를 위한 이용설계에 활용할 수 있도록 하는 데 그 목적이 있다.

컨테이너 크레인 붐 구조물의 잔존수명 예측을 위한 컴퓨터 시뮬레이션 (Computer Simulation for Residual Life Expectancy of a Container Crane Boom Structure)

  • 김상열;배형섭;이육형;박명관
    • 한국정밀공학회지
    • /
    • 제24권9호
    • /
    • pp.119-129
    • /
    • 2007
  • The residual life expectancy of the container crane which has been operated more or less 39 years is examined carefully, especially on the boom structure. The basic load and load combination need to be considered for to analyse the boom structure. Various parts of container crane are modeled for to analyse stress, the deflection and the fatigue. Analysis results show that the boom is stable in the stress and deflection but the boom vertical member is over the fatigue life. The rail support beam and boom bottom chord are approximately near the fatigue life. Analysis results show that the residual life of rail support beam and the boom bottom chord would be 2.2 years and 6.8 years, respectively.

쇼트피이닝한 부재의 피로수명 예측 및 피로강도 평가 (Fatigue Life Prediction and Strength Evaluation of Shot Peened Parts)

  • 김환두;이순복
    • 한국기계연구소 소보
    • /
    • 통권15호
    • /
    • pp.75-87
    • /
    • 1985
  • A review was performed on fatigue life prediction and strength evaluation of shot peened parts. Fatigue strength of machine parts can be improved by shot peening due to compressive residual stresses on such parts. Compressive residual stress cannot be uniquely define by peening intensity. Several measuring methods of residual stress and the principle of hole drilling method are presented. Exploratory measurement of residual stress was performed on the shot peened SM35C plate with the hole drilling method. Fatigue life and failure location of shot peened parts under bending load can be predicted by a damage parameter which is incorporated with material properties, residual stress, and applied stress conditions. Some method are presented to predict the fatigue strength of shot peened parts at any given life. Shot peening gives its full benefit to the notched machine parts of high strength steels.

  • PDF

국부가열을 이용한 면외거셋의 피로강도 향상 (Improvement of Fatigue Strength by Spot Heating for Out-of-plane Gusset)

  • 정영화;남왕현;장동휘
    • 산업기술연구
    • /
    • 제21권B호
    • /
    • pp.213-222
    • /
    • 2001
  • In the study, the fatigue strength improvement and mechanism have been estimated by the Spot-Heating treatment on welded bead toes. For this, web-gusset specimens were made without residual stresses and the others with residual stresses imposed by Spot-Heating. The 4-point bending tests were performed in order to estimate the effect of spot-heating on fatigue strength and fatigue characteristics quantitatively for non load-carrying fillet welded joints subjected to pure bending. As a result of fatigue test, fatigue strength of As-Welded specimen for non load-carrying fillet welded joints subjected to pure bending has satisfied the grade of fatigue prescribed in specifications of korea, AASHTO and JSSC. As compare with As-Welded specimen and Spot-Heating specimen have increased about 20% for the fatigue strength at $7.7{\times}10^6$ cycles. The Spot-Heating by reformation of the residual stress on welded bead toes has greatly affected the fatigue crack propagation life, but has slightly affected the fatigue crack initiation life.

  • PDF

손상역학을 이용한 용접부의 피로수명예측 (Fatigue Life Prediction of Weldment with Damage Mechanics)

  • 정흥진;유병찬
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2008년도 정기 학술대회
    • /
    • pp.60-64
    • /
    • 2008
  • According to previous research, welding-induced stress in steel structures can significantly affect the fatigue behaviour; it produces initial damage of weldiug part of structure locally and residual stresses reduce the fatigue strength after welding precess. In this study, through continuum damage mechanics, we can estimate the weldiug damage using the stress and strain history during welding process and the effect of welding residual stress for assessment of fatigue life. The variation of welding-induced stresses and strains need be traced precisely in advance for a reliable weldiug damage assessment. In this study, a damage and fatigue analysis techniques for steel structures with welding-induced residual stress are presented. First, We calculate the history of temperature according with welding process. And residual stress with a welding thermal history was evaluated by non-linear thermal stress analysis. Secondly, welding damage and fatigue life are estimated with kinetic damage law.

  • PDF

피로수명예측을 위한 잔류강도 저하모델의 파라미터 결정법 제안(II) (A Proposal of parameter Determination Method in the Residual Strength Degradation Model for the Prediction of Fatigue Life(II))

  • 김상태;장성수
    • 대한기계학회논문집A
    • /
    • 제25권9호
    • /
    • pp.1452-1460
    • /
    • 2001
  • A new method of parameter determination in the fatigue residual strength degradation model is proposed. The new method and minimization technique is compared experimentally to account for the effect of tension-compression fatigue loading of spheroidal graphite cast iron and graphite/epoxy laminate. It is shown that the correlation between the experimental results and the theoretical prediction on the fatigue life and residual strength distribution using the proposed method is very reasonable. Therefore, the proposed method is more adjustable in the determination of the parameter than minimization technique for the prediction of the fatigue characteristics.

피로균열 발생수명에 대한 압입 잔류응력의 영향 (Effect of Indentation Residual Stresses on the Fatigue Crack Initiation Life)

  • 이환우;강태일
    • 한국정밀공학회지
    • /
    • 제21권5호
    • /
    • pp.158-165
    • /
    • 2004
  • Up to now, many crack repair techniques have been developed for inhibiting crack growth in structural components. However, the simplest way for inhibiting crack growth is to apply a indentation at the crack tip or at some distance ahead of the expected crack growth path so as to produce residual compressive stresses that can reduce the effective stresses around the crack tip. In spite of its importance to the aerospace industry, little attention has been devoted to evaluation of the indentation residual stress effect on the fatigue crack initiation life quantitatively. Therefore, in the present work, the magnitude and distribution of the indentation residual stresses were investigated in order to estimate the beneficial effect on fatigue crack initiation by using finite element method. Furthermore, to examine the validity of finite element analysis results, residual stress distribution in the indented specimen was measured by using X-ray diffraction technique, and fatigue crack behavior at fastener hole in aluminum alloy 7075-T6 before and after indentation processes was investigated.

SS41 용접재의 잔류응력장내에서의 피로균열 성장거동에 관한 연구 (A Study on the Fatigue Crack Growth Behavior in Residual Stress Field of the SS41 Welding Material)

  • 최병기
    • 한국안전학회지
    • /
    • 제17권1호
    • /
    • pp.33-38
    • /
    • 2002
  • SS41 material is welded automatically and is investigated some effects of the welding residual stress on the growth and propagation of fatigue crack, so as to study the fatigue behaviour in the welding residual stress field. The summarized results are as follows; 1) In case of the load amplitude is constant, as the stress ration is changing to 0.1, 0.33 and 0.5 the propagation life is constant but the initiation life decreases. And than, when maximum load or minimum load is constant, s the stress ration increases the initiation life and propagation life. 2) It was shown that the fatigue crack propagation ratio da/dn was almost constant regardless of the stress ratio change at constant load amplitude and that the larger stress ratio, the slower was the fatigue crack propagation ratio. 3) The opening ratio U is influenced by $K_{max}$ but it isn't only the function of $K_{max}$ because data range is very large. 4) The fatigue life of the specimens on tensile compressive residual stress field was decreased and increased respectably more than that of the base metal.

선체 용접부의 균열진전 및 피로수명예측에 관한 연구(II) (A Study of Crack Propagation and Fatigue Life Prediction on Welded Joints of Ship Structure (II))

  • 김경수;심천식;권영빈;고희승;기혁근
    • 대한조선학회논문집
    • /
    • 제45권6호
    • /
    • pp.679-687
    • /
    • 2008
  • The fatigue life of ship structure under cyclic loading condition is made up of crack initiation and propagation stages. For a welding member in ship structure, the fatigue crack propagation life is more important than the fatigue crack initiation life. To calculate precisely the fatigue crack propagation life at the critical welding location, the knowledge of the residual stress sensitivity on the fatigue strength is necessary. In this study, thermo elastic-plastic analysis was conducted in order to examine the effect of residual stress on the fatigue crack propagation life. Also the fatigue crack propagation lives considering residual stress were calculated using fatigue crack growth code, AFGROW, on the basis of fracture mechanics. AFGROW is widely used for fatigue crack growth predictions under constant and variable amplitude loading. The reliability of AFGROW on the fatigue of ship structure was confirmed by the comparison of the estimated results with the fatigue propagation test results.