• Title/Summary/Keyword: residual displacement spectrum

Search Result 3, Processing Time 0.017 seconds

A hybrid deep learning model for predicting the residual displacement spectra under near-fault ground motions

  • Mingkang Wei;Chenghao Song;Xiaobin Hu
    • Earthquakes and Structures
    • /
    • v.25 no.1
    • /
    • pp.15-26
    • /
    • 2023
  • It is of great importance to assess the residual displacement demand in the performance-based seismic design. In this paper, a hybrid deep learning model for predicting the residual displacement spectra under near-fault (NF) ground motions is proposed by combining the long short-term memory network (LSTM) and back-propagation (BP) network. The model is featured by its capacity of predicting the residual displacement spectrum under a given NF ground motion while considering the effects of structural parameters. To construct this model, 315 natural and artificial NF ground motions were employed to compute the residual displacement spectra through elastoplastic time history analysis considering different structural parameters. Based on the resulted dataset with a total of 9,450 samples, the proposed model was finally trained and tested. The results show that the proposed model has a satisfactory accuracy as well as a high efficiency in predicting residual displacement spectra under given NF ground motions while considering the impacts of structural parameters.

Evaluation of pulse effect on frequency content of ground motions and definition of a new characteristic period

  • Yaghmaei-Sabegh, Saman
    • Earthquakes and Structures
    • /
    • v.20 no.4
    • /
    • pp.457-471
    • /
    • 2021
  • This study aims at providing a simple and effective methodology to define a meaningful characteristic period for special class of earthquake records named "pulse-like ground motions". In the proposed method, continuous wavelet transform is employed to extract the large pulse of ground motions. Then, Fourier amplitude spectra obtained from the original ground motion and the residual motion is simply compared. This comparison permits to define a threshold pulse-period (Tp∗) as the threshold period above which the pulse component has negligible contributions to the Fourier amplitude spectrum. The effect of pulse on frequency content of motions was discussed on the light of this definition. The advantage and superior features of the new definition were related to the inelastic displacement ratio (IDR) for single-degree-of-freedom systems with period equal to one half of the threshold period. Analyses performed for the proposed period at three ductility levels u=2,4,6 were compared with the results obtained at half of pulse period derived from wavelet analysis, peak-point method and the peak of product of the velocity and the displacement response spectra (Sv x Sd). According to the results, pulse effects on inelastic displacement ratio seem to be more important when $\frac{T_p^*}{T}=2$ (T is the fundamental vibration period of system). The results showed that utilizing of the proposed definition could facilitate an enhanced understanding of pulse-like records features.

Design Methods of the Longitudinal Motion-Limiting Devices in Multi-Span Continuous Bridges (다경간연속교의 교축방향 이동제한장치의 설계방법)

  • 전귀현;이지훈
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.2 no.4
    • /
    • pp.145-154
    • /
    • 1998
  • The motion-limiting devices can be used for reducing the maximum and residual displacements of the multi-span continuous bridges with inelastic elements such as isolation bearings and plastic hinges formed in piers. For the design of motion-limiting device, the nonlinear time history analysis is required. But the time history analysis is time consuming and very complex. This study suggests the simple design procedure of the motion-limiting devices using the equivalent elastic analysis method and the acceleration-displacement spectrum concept. The suggested design procedure can be used very effectively for determining the location and gap size of the motion-limiting devices.

  • PDF