• Title/Summary/Keyword: residual condition

Search Result 898, Processing Time 0.034 seconds

Rehabilitation of maxillary partial edentulous patients using implant assisted removable partial denture (상악 소수치 잔존 환자에서 임플란트를 이용한 가철성 부분틀니 수복 증례)

  • Lee, Bo-Ra;Kim, Jee-Hwan
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.52 no.2
    • /
    • pp.128-135
    • /
    • 2014
  • Treatment options for partially edentulous patients are fixed partial denture, removable partial denture and implant supported fixed partial denture. In case of a patient with a few remaining teeth, removable partial denture and implant supported fixed prosthesis are available. For implant fixed prothesis, enough implant fixtures are required and the patient's general condition, local factors and economic status must be considered. When the condition of the abutments and the residual ridge is favorable and the prosthesis is well designed, removable partial denture can be an option. In removable partial denture, the bilateral support is important. If the teeth remain unilateral, harmful stress is put on the abutments by the fulcrum line. In this situation, strategic implantation and implant-retained or assisted removable partial denture is beneficial to the retention and support of the denture. And this can be cost-effective, functional and esthetic choice of treatment. This article describes the prosthodontic rehabilitation of Maxillary Kennedy class I partially edentulous patients. In these two cases, the patients had a small number of teeth and they were restored by the combination of a removable partial denture and dental implants.

Effect of SO2 Generating Pad Treatments on the Quality of Dried Persimmons during Storage (SO2 발생패드처리가 곶감의 저장 중 품질에 미치는 영향)

  • Oh, Sung-Il;Kim, Chul-Woo;Lee, Uk
    • Journal of Korean Society of Forest Science
    • /
    • v.105 no.2
    • /
    • pp.202-207
    • /
    • 2016
  • The effects of $SO_2$ generating pads ($SO_2$ 0, 0.5, 1, and 2 g/kg) on the quality of dried persimmons slices were investigated. The $SO_2$ generating pads for storage did not affect to weight, moisture loss rate, and soluble solid contents of dried persimmons. The color change(E) after storage for 12 weeks was the highest (value = 3.5) in control ($SO_2$ 0 g/kg), whereas that was the lowest (value = 2.6) under $SO_2$ 2 g/kg condition. When we measured the browning degree after 12 weeks, they showed O.D. 0.15, 0.14, 0.10, and 0.05 in serial dilution treated pads with $SO_2$ 0, 0.5, 1, and 2 g/kg, respectively. The decaying rate was the highest (9.0%) in control after 12 weeks storage, whereas it did not show any spoilage in $SO_2$ 2 g/kg treated condition for whole storage period. The concentration of residual $SO_2$ in dried persimmons was detected within a safe range of 3.3~97.0 ppm. Therefore, the shelf-life of dried persimmons was lengthened in $SO_2$ generating pads (especially in $SO_2$ 2 g/kg) for inhibiting of browning and decaying.

An Experimental Study on Flow Distributor Performance with Single-Train Passive Safety System of SMART-ITL (SMART-ITL 1 계열 피동안전계통을 이용한 유동분사기 성능에 대한 실험연구)

  • Ryu, Sung Uk;Bae, Hwang;Yang, Jin Hwa;Jeon, Byong Guk;Yun, Eun Koo;Kim, Jaemin;Bang, Yoon Gon;Kim, Myung Joon;Yi, Sung-Jae;Park, Hyun-Sik
    • Journal of Energy Engineering
    • /
    • v.25 no.4
    • /
    • pp.124-132
    • /
    • 2016
  • In order to estimate the effect of flow distributors connected to an upper nozzle of CMT(Core Makeup Tank) on the thermal-hydraulic characteristics in the tank, a simplified 2 inch Small Break Loss of Coolant Accident(SBLOCA) was simulated by skipping the decay power and Passive Residual Heat Removal System(PRHRS) actuation. The CMT is a part of safety injection systems in the SMART (System Integrated Modular Advanced Reactor). Each test was performed with reliable boundary conditions. It means that the pressure distribution is provided with repeatable and reproducible behavior during SBLOCA simulations. The maximum flow rates were achieved at around 350 seconds after the initial opening of the isolation valve installed in CMT. After a short period of decreased flow rate, it attained a steady injection flow rate after about 1,250 seconds. This unstable injection period of the CMT coolant is due to the condensation of steam injected into the upper part of CMT. The steady injection flow rate was about 8.4% higher with B-type distributor than that with A-type distributor. The gravity injection during hot condition tests were in good agreement with that during cold condition tests except for the early stages.

A Study on the Application of SAW Process for Thin Plate of 3.2 Thickness in Ship Structure (선체외판부 3.2T 박판에 대한 SAW 용접 적용에 관한 연구)

  • Oh, Chong-In;Yun, Jin-Oh;Lim, Dong-Young;Jeong, Sang-Hoon;Lee, Jeong-Soo
    • Proceedings of the KWS Conference
    • /
    • 2010.05a
    • /
    • pp.51-51
    • /
    • 2010
  • Recently just as in the automobile industry, shipbuilders also try to reduce material consumption and weight in order to keep operating costs as low as possible and improve the speed of production. Naturally industry is ever searching for welding techniques offering higher power, higher productivity and a better quality. Therefore it is important to have a details research based on the various welding process applied to steel and other materials, and to have the ability both to counsel interested companies and to evaluate the feasibility of implementation of this process. Submerged-arc welding (SAW) process is usually used about 20% of shipbuilding. Similar to gas metal arc welding(GMAW), SAW involves formation of an arc between a continuously-fed bare wire electrode and the work-piece. The process uses a flux to generate protective gases and slag, and to add alloying elements to the weld pool and a shielding gas is not required. Prior to welding, a thin layer of flux powder is placed on the work-piece surface. The arc moves along the joint line and as it does so, excess flux is recycled via a hopper. Remaining fused slag layers can be easily removed after welding. As the arc is completely covered by the flux layer, heat loss is extremely low. This produces a thermal efficiency as high as 60% (compared with 25% for manual metal arc). SAW process offers many advantages compared to conventional CO2 welding process. The main advantages of SAW are higher welding speed, facility of workers, less deformation and better than bead shape & strength of welded joint because there is no visible arc light, welding is spatter-free, fully-mechanized or automatic process, high travel speed, and depth of penetration and chemical composition of the deposited weld metal. However it is difficult to application of thin plate according to high heat input. So this paper has been focused on application of the field according to SAW process for thin plate in ship-structures. For this purpose, It has been decided to optimized welding condition by experiments, relationship between welding parameters and bead shapes, mechanical test such as tensile and bending. Also finite element(FE) based numerical comparison of thermal history and welding residual stress in A-grade 3.2 thickness steel of SAW been made in this study. From the result of this study, It makes substantial saving of time and manufacturing cost and raises the quality of product.

  • PDF

Numerical Analysis on Liquefaction Countermeasure of Seabed under Submerged Breakwater Using Concrete Mat Cover (for Irregular Waves) (콘크리트매트 피복을 이용한 잠제하 해저지반에서의 액상화 대책공법에 관한 수치해석 (불규칙파 조건))

  • Lee, Kwang-Ho;Ryu, Heung-Won;Kim, Dong-Wook;Kim, Do-Sam;Kim, Tae-Hyung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.1
    • /
    • pp.20-35
    • /
    • 2017
  • In the case of the seabed around and under gravity structures such as submerged breakwater is exposed to a large wave action long period, the excess pore pressure will be significantly generated due to pore volume change associated with rearrangement soil grains. This effect will lead a seabed liquefaction around and under structures as a result of the decrease in the effective stress, and eventually the possibility of structure failure will be increased. The study of liquefaction potential for regular waves had already done, and this study considered for irregular waves with the same numerical analysis method used for regular waves. Under the condition of the irregular wave field, the time and spatial series of the deformation of submerged breakwater, the pore water pressure (oscillatory and residual components) and pore water pressure ratio in the seabed were estimated and their results were compared with those of the regular wave field to evaluate the liquefaction potential on the seabed quantitatively. Although present results are based on a limited number of numerical simulations, one of the study's most important findings is that a safer design can be obtained when analyzing case with a regular wave condition corresponding to a significant wave of the irregular wave.

Optimization of Electrolysis Using Sacrificial Electrode for the Treatment of Electroless Nickel Plating Wastewater (희생전극을 이용한 무전해 니켈 도금 폐수의 전기분해처리 최적화)

  • Kim, Young-Shin;Jeon, Byeong-Han;Cho, Soon-Haing
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.4
    • /
    • pp.204-209
    • /
    • 2015
  • The effluent limit of nickel from electroplating wastewater has been strengthened from 5 mg/L to 3 mg/L from 2014. However, currently applied treatment process for nickel plating wastewater is unable to meet the effluent limit, most of the treatment concept conducted by treatment plant is dilution with other metal bearing wastewater. This can cause very significant impact to the environment of nickel contamination. With this connection, the feasibility test has been conducted with the use of electrolysis by using sacrificial electrodes. Experiments were conducted in synthetic and electroless nickel plating wastewater. Optimal condition of current density, pH were derived from the synthetic wastewater. It was found that the removal efficiency of nickel exceeded 94% at the operation condition of at pH 9 and the current density of $1{\sim}2mA/cm^2$. At this conditions, the iron sludge was generated very low amount. However, it was unsuccessful to meet the effluent limit by applying these treatment conditions to the real electroplating wastewater. This can be explained due to the matrix effect of other metals and anions contained real electroplating wastewater. From the result of further study, the optimal conditions for the real wastewater treatment were found out to be at pH 9, current density $6{\sim}7mA/cm^2$, for 5 minutes of operating time. At these conditions, 88% removal of nickel was achieved, which results the residual nickel concentration was below 3 mg/L.

Investigation of Soil Characteristics and Landslides Probability in East Island of Dok-Do (독도 동도지역의 토질특성 및 산사태가능성 조사)

  • Song, Young-Suk;Chae, Byung-Gon;Cho, Yong-Chan;Lee, Choon-Oh
    • The Journal of Engineering Geology
    • /
    • v.17 no.4
    • /
    • pp.665-671
    • /
    • 2007
  • In this study, the soil characteristics and the landslide probability are investigated in East Island of Dok-do. The distribution and depth of soil layer were investigated and the soil samples were taken from the soil layer in East Island. As the results of field investigation, the soil layer was partly distributed in specific location and the soil depth was ranged from 1cm to 50cm. Also, the soil depth was mainly ranged about 10cm in the large part of soil layer. The soils were classed as the weathered residual soils and involved many organic contents such as rotten roots and leaves. The average of water contents is 23.2%, and the average of liquid limits is 42.2%. Also, the soils is non-plastic condition. Also, the soils were mainly classed as the poor graded sand including loam contents. Meanwhile, the landslide probability was investigated through a survey of the soil layer distribution in East Island. The soil depth was very shallow in the large part of the soil layer, and the distribution area of soil layer was small. Therefore, it may predict that the landslide probability is very low due to the dissatisfaction of landslide occurrence condition.

A Study on the Warpage of Glass Fiber Reinforced Plastics for Part Design and Operation Condition: Part 1. Amorphous Plastics (유리섬유로 보강된 수지에서 제품설계 및 성형조건에 따른 휨의 연구: Part 1. 비결정성 수지)

  • Lee, Min;Kim, Hyeok;Lyu, Min-Young
    • Polymer(Korea)
    • /
    • v.36 no.5
    • /
    • pp.555-563
    • /
    • 2012
  • Warpage of injection molded product is caused by non-uniform shrinkage during shaping operation and relaxation of residual stress. Robust part design and glass fiber reinforced reins have been adopted to prevent warpage of part. Warpages for part designs have been investigated in this study according to the injection molding conditions. Part design contains flat specimen and two different rib designs in the flat part. Resins used in this study were glass fiber reinforced amorphous plastics, PC and ABS. Different rib designs showed significant differences of warpages in the parts. Various warpages have been observed in the three regions of the part, near gate region, opposite region to the gate, and flow direction region. Results of computer simulation revealed that the warpages were strongly related to glass fiber orientation. Flat specimen showed the smallest warpage and the specimen with ribs to the flow direction showed a high resistance to warpage. Warpage highly depended upon part design rather than molding condition. It was concluded that the rib design and selection of gate location in injection molding would be the most important factors for the control of warpage since those are directly related to the fiber orientation during molding.

Hybrid MBE Growth of Crack-Free GaN Layers on Si (110) Substrates

  • Park, Cheol-Hyeon;O, Jae-Eung;No, Yeong-Gyun;Lee, Sang-Tae;Kim, Mun-Deok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.183-184
    • /
    • 2013
  • Two main MBE growth techniques have been used: plasma-assisted MBE (PA-MBE), which utilizes a rf plasma to supply active nitrogen, and ammonia MBE, in which nitrogen is supplied by pyrolysis of NH3 on the sample surface during growth. PA-MBE is typically performed under metal-rich growth conditions, which results in the formation of gallium droplets on the sample surface and a narrow range of conditions for optimal growth. In contrast, high-quality GaN films can be grown by ammonia MBE under an excess nitrogen flux, which in principle should result in improved device uniformity due to the elimination of droplets and wider range of stable growth conditions. A drawback of ammonia MBE, on the other hand, is a serious memory effect of NH3 condensed on the cryo-panels and the vicinity of heaters, which ruins the control of critical growth stages, i.e. the native oxide desorption and the surface reconstruction, and the accurate control of V/III ratio, especially in the initial stage of seed layer growth. In this paper, we demonstrate that the reliable and reproducible growth of GaN on Si (110) substrates is successfully achieved by combining two MBE growth technologies using rf plasma and ammonia and setting a proper growth protocol. Samples were grown in a MBE system equipped with both a nitrogen rf plasma source (SVT) and an ammonia source. The ammonia gas purity was >99.9999% and further purified by using a getter filter. The custom-made injector designed to focus the ammonia flux onto the substrate was used for the gas delivery, while aluminum and gallium were provided via conventional effusion cells. The growth sequence to minimize the residual ammonia and subsequent memory effects is the following: (1) Native oxides are desorbed at $750^{\circ}C$ (Fig. (a) for [$1^-10$] and [001] azimuth) (2) 40 nm thick AlN is first grown using nitrogen rf plasma source at $900^{\circ}C$ nder the optimized condition to maintain the layer by layer growth of AlN buffer layer and slightly Al-rich condition. (Fig. (b)) (3) After switching to ammonia source, GaN growth is initiated with different V/III ratio and temperature conditions. A streaky RHEED pattern with an appearance of a weak ($2{\times}2$) reconstruction characteristic of Ga-polarity is observed all along the growth of subsequent GaN layer under optimized conditions. (Fig. (c)) The structural properties as well as dislocation densities as a function of growth conditions have been investigated using symmetrical and asymmetrical x-ray rocking curves. The electrical characteristics as a function of buffer and GaN layer growth conditions as well as the growth sequence will be also discussed. Figure: (a) RHEED pattern after oxide desorption (b) after 40 nm thick AlN growth using nitrogen rf plasma source and (c) after 600 nm thick GaN growth using ammonia source for (upper) [110] and (lower) [001] azimuth.

  • PDF

Estimation of Carrying Capacity in Kamak Bay( I ) - Estimation of Primary Productivity Using the Eco-hydrodynamic Model- (가막만의 환경용량 산정( I ) -생태계모델을 이용한 기초생산력 산정-)

  • CHO Eun Il;PARK Chung Kil;LEE Suk Mo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.29 no.3
    • /
    • pp.369-385
    • /
    • 1996
  • The eco-hydrodynamic model was used to estimate the primary productivity of the oyster culture grounds in Kamak Bay. It is composed of the three-dimensional hydrodynamic model for the simulation of water flow and ecosystem model for the simulation of phytoplankton. The ecosystem model was applied to simulate phytoplankton biomass during culturing period in condition of no oyster culture grounds. The field surveys were conducted from May, 1994 to March, 1995 in Kamak bay. The results showed the concentration of chlorophyll $\alpha$ to be $1.00\~23.28\;{\mu}g/l$ in the surface layer, $1.27\~29.97\;{\mu}g/l$ in the middle layer and $1.23\~23.08\;{\mu}g/l$ the bottom layer. In monthly variations of chlorophyll $\alpha$ concentration, very high concentration were found in July, 1994 and very low concentrations in December, 1994. As the results of three-dimensional hydrodynamic simulation, the computed tidal currents ave mainly toward the inner part of bay through Yeosu Harbor and the southern mouth of a bay during the flood tide. The computed residual currents were dominated southward in Yeosu Harbor and eastward in the mouth of bay and also showed strong clockwise water circulation at the mouth of bay. The pattern between the simulated and observed tidal ellipses at three stations was very similar. The mean relative errors of all levels between the simulated and observed phytoplankton biomass at 14 stations in Kamak Bay were $13.81\%,\;9.31\%\;and\;17.84\%$, respectively. The results of phytoplankton biomass simulation showed that the biomass increased from June to September and rapidly decreased to December and then slowly increased to March. Primary productivity was estimated in the range of $0.99\~10.20gC/m^2/d$ with the average value of $4.43gC/m^2/d$ in condition of no oyster culture grounds. Primary productivity was rapidly increased from lune to August and rapidly decreased to December and then slowly increased from January to March in Kamak Bay.

  • PDF