• Title/Summary/Keyword: residual condition

Search Result 898, Processing Time 0.03 seconds

Recovery of Caustic Soda in Textile Mercerization by Combined Membrane Filtration (복합 막분리 공정에 의한 섬유가공 공정에서의 가성소다 회수)

  • Yang, Jeong-Mok;Park, Chul-Hwan;Cho, Jin-Ku;Kim, Sang-Yong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.12
    • /
    • pp.1273-1280
    • /
    • 2008
  • This study sought to establish the optimum operating condition for the recovery of caustic (NaOH) solution from mercerization in textile process. As main factors, the silt density index (SDI) evaluation of ceramic membrane for the application of nanofiltration/reverse osmosis (NF/RO) membrane, the recovery yield measurement of caustic solution for the application of polymeric membrane, the optimum condition of chemical cleaning for the membrane regeneration, the optimum removal condition of total organic carbon (TOC), turbidity, color, and the permeate flux of ceramic membrane/polymeric membrane combined process were investigated. As results, ceramic ultrafiltration (UF) in the first step and nanofiltration (NF) in the second step were found to be suitable for the removal of total suspended solid (TSS), residual organics, turbidity including color, and the recovery of caustic solution from caustic wastewater stream in mercerization process. When only the ceramic UF membrane was used, the rejection efficiency of both of TSS and turbidity was more than 99.0%, and the color and TOC were rejected about 74.7% and 49.2%, respectively. Meanwhile, the combined membrane precess of UF and NF membranes showed even more efficient removal abilities and thus more than 99.9% of TSS and turbidity, 87.7% of color, and 78.2% of TOC were removed. In particular, 91.3% of NaOH was successfully recovered with 83.7% of total volume in the combined membrane process. With this regard, a clean caustic solution was obtained in a high purity, which can be reused for mercerization process, expecting to offer economical benefits.

Optimization of Ammonia Percolation Process for Ethanol Production from Miscanthus Sinensis (억새를 이용한 바이오 에탄올 생산을 위한 암모니아 침출 공정 최적화)

  • Kim, Kyoung-Seob;Kim, Jun Seok
    • Korean Chemical Engineering Research
    • /
    • v.48 no.6
    • /
    • pp.704-711
    • /
    • 2010
  • Lignocellulose ($2^{nd}$ generation) is difficult to hydrolyze due to the presence of lignin and the technology developed for cellulose fermentation to ethanol is not yet economically viable. However, recent advances in the extremely new field of biotechnology for the ethanol production are making it possible to use of agriculture residuals and nonedible crops biomass, e.q., rice straw and miscanthus sinensis, because of their several superior aspects as agriculture residual and nonedible crops biomass; low lignin, high contents of carbohydrates. In this article, as the basic study of AP(Ammonia Percolation), the properties and the optium conditions of process were established, and then the overall efficiency of AP was investigated. The important independent variables for AP process were selected as ammonia concentration, reaction temperature, and reaction time. The percolation condition for maximizing the content of cellulose, the enzymatic digestibility, and the lignin removal was optimized using RSM(Response Surface Methodology). The determined optimum condition is ammonia concentration; 11.27%, reaction temperature; $157.75^{\circ}C$, and reaction time; 10.01 min. The satisfying results were obtained under this optimized condition, that is, the results are as follows: cellulose content(relative); 39.98%, lignin content(relative); 8.01%, and enzymatic digestibility; 85.89%.

The Fatigue Experience of Shift Work Nurses (교대근무간호사의 피로경험)

  • Kho Hyo Jung;Kim Myung Ye;Kwon Young Sook;Kim Chung Nam;Park Kyung Min;Park Jung Sook;Park Young Suk;Park Cheong Ja;Shin Young Hee;Lee Kyung Hee;Lee Byung Sook;Lee Eun Joo
    • Journal of Korean Public Health Nursing
    • /
    • v.18 no.1
    • /
    • pp.103-118
    • /
    • 2004
  • The purpose of this study was to understand the process and investigate basic theory of fatigue experience of shift work nurses. The present study adopted grounded theory methodology on fatigue of shift work nurses. The participants for this study were 15 shift work nurses who were in the age of 25 to 35, the clinical experience of 2 to 14 years and the work department of ICU. ER. ward and delivery room. The data were collected from 2000 to 2003 by using interviews and observations. The contents of the interviews were tape-recorded and were drawn through repeated method. And then were analyzed into the concept, subcategories, and categories with the open coding process and axial coding was done to identify the relationships of the concepts and categories according to the paradigm models. The core category generated, which was a central phenomena of the exhaustion process. The causal condition is change events. The central condition of exhaustion were sorted as physical discomfort, decreasing vigor, psychological instability, feeling of sleeping desire, changing face impression and being heavy body. The intervening condition were discovered as social$\cdot$ psychology$\cdot$physical resist and positive$\cdot$negative interaction strategies. The consequences of the fatigue process is the short term exhaustion relief and long term residual exhaustion. The fatigue process of this study was 'break through exhaustion' of change event-exhaustion-resist-resolve intervention-adaptation. This study offers better understanding on fatigue process of shift work nurses and may facilitate more appropriate interventive strategies to support, information and knowledges according to fatigue process.

  • PDF

Evaluation of ammonia emission reducing effect by adding waste cooking oil in pilot-scale composting of dairy cattle manure

  • Kazutaka Kuroda;Akihiro Tanaka;Kenichi Furuhashi;Naoki Fukuju
    • Animal Bioscience
    • /
    • v.36 no.10
    • /
    • pp.1612-1618
    • /
    • 2023
  • Objective: In our previous study, we observed that the addition of waste cooking oil (WCO) reduced ammonia (NH3) emissions during laboratory-scale composting of dairy cattle manure under low-aeration condition. Therefore, this study aimed to evaluate the effect of addition of WCO on NH3 emissions reduction during pilot-scale composting of dairy cattle manure, which is close to the conditions of practical composting treatment. Methods: Composting tests were conducted using pilot-scale composting facilities (1.8 m3 of capacity). The composting mixtures were prepared from manure, sawdust, and WCO. Two treatments were set: without WCO (Control) and with WCO added to 3 wt% of manure (WCO3). Composting was conducted under continuous aeration at 40 L/min, corresponding to 22.2 L/(min·m3) of the mixture at the start of composting. The changes in temperatures, NH3 concentrations in the exhaust gases, and contents of the composted mixtures were analyzed. Based on these analysis results, the effect of WCO addition on NH3 emissions and nitrogen loss during composting was evaluated. Results: During composting, the temperature increase of the composting mixture became higher, and the decreases of weight and water content of the mixture became larger in WCO3 than in Control. In the decrease of weight, and the residual weight and water content of the mixture, significant differences (p<0.05) were detected between the two treatments at the end of composting. The NH3 concentrations in the exhaust gases tended to be lower in WCO3 than in Control. Nitrogen loss was 21.5% lower in WCO3 than in Control. Conclusion: Reduction of NH3 emissions by the addition of WCO under low aeration condition was observed in pilot-scale composting, as well as in laboratory-scale composting. This result suggests that this method is effective in reducing NH3 emissions in practical-scale composting.

Regular Waves-induced Seabed Dynamic Responses around Submerged Breakwater (규칙파동장하 잠제 주변지반의 동적거동에 관한 수치해석)

  • Lee, Kwang-Ho;Ryu, Heung-Won;Kim, Dong-Wook;Kim, Do-Sam;Kim, Tae-Hyung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.28 no.3
    • /
    • pp.132-145
    • /
    • 2016
  • In case of the seabed around and under gravity structures such as submerged breakwater is exposed to a large wave action long period, the excess pore pressure will be generated significantly due to pore volume change associated with rearrangement soil grains. This effect will lead a seabed liquefaction around and under structures as a result from decrease in the effective stress. Under the seabed liquefaction occurred and developed, the possibility of structure failure will be increased eventually. In this study, to evaluate the liquefaction potential on the seabed quantitatively, numerical analysis was conducted using the expanded 2-dimensional numerical wave tank model and the finite element elasto-plastic model. Under the condition of the regular wave field, the time and spatial series of the deformation of submerged breakwater, the pore water pressure (oscillatory and residual components) and pore water pressure ratio in the seabed were estimated.

A Study on Moment Gradient Factor for Inelastic Lateral-Torsional Buckling of Stepped I-Beam Subjected to Uniformly Distributed Load and End Moment (연속경간 하중을 받는 I형 스텝보의 비탄성 횡-비틀림 좌굴강도산정을 위한 모멘트 구배계수 연구)

  • Son, Ji-Min;Park, Jong-Sup
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.4
    • /
    • pp.1-9
    • /
    • 2009
  • This paper investigates inelastic lateral-torsional buckling of stepped beams subjected to uniformly distributed load and end moments. A three-dimensional finite-element program ABAQUS (2007) and a regression program MINITAB(2006) were used to analytically develop new design equation for singly and doubly stepped beams with simple boundary condition. The flanges of the smaller cross-section in the stepped beams were fixed at 30.48 by 2.54 cm, whereas the width and thickness of the flanges of the larger cross-section varied. The web thickness and height of the beams were kept at 1.65 cm and 88.9 cm, respectively. The ratios of the flange thickness, flange width, and stepped length of beam are considered with analytical parameters. Two groups of 27 cases and 36 cases, respectively, were analyzed for doubly and singly stepped beams in the inelastic buckling range. The combined effects of residual stresses and geometrical imperfection on inelastic lateral-torsional buckling of beams are considered. The distributions of residual stress of the cross-section is same as shown in Pi and Trahair (1995) and the initial geometric imperfection of the beam is set by central displacement equal to 0.1% of the unbraced length of beam. The comparisons between results from proposed equations and the results from finite element analyses were presented in this paper. The maximum differences of two results are of 13% for the doubly stepped beam and 10% for the singly stepped beam. The proposed equations definitely improve current design methods for the inelastic lateral-torsional buckling problem and increase efficiency in building and bridge design.

Removal of Cr, Pb and Cd from Reservoir Sediment by Electrokinetic Technique (동전기를 이용한 유수지 오염 퇴적토내 Cd, Pb 및 Cr제거)

  • Shin, Hyun-Moo
    • Journal of Soil and Groundwater Environment
    • /
    • v.14 no.1
    • /
    • pp.68-77
    • /
    • 2009
  • For the reservoir sediment highly contaminated with total Cr, Pb, and Cd, the applicability of electrokinetic remediation method was evaluated. Also, BCR sequential extraction method was adopted to compare the heavy metal speciation in between before and after electrokinetic reaction that is operated under constant current condition for the sediment. After reaction, total Cr and Pb moved toward the direction of anode, while Cd tended to cathode and stayed highest in the midst of sediment specimen. From the BCR sequential extraction analysis, it was known that for total Cr and Pb the residual fraction that showed high fraction before reaction decreased and changed to the oxidation fraction. On the other hand, for Cd the fraction of exchangeable/carbonate that dominated most fractions before reaction changed to the residual and oxidation fractions.

Syngas Concentration and Efficiency in Heavy Residual Oil Gasification with 1 Ton/Day-Class Entrained-Bed Reactor (1톤/일급 분류층 가스화기에서 중질잔사유의 가스화 합성가스 조성 및 효율 변화)

  • 주지선;나혜령;윤용승
    • Journal of Energy Engineering
    • /
    • v.12 no.1
    • /
    • pp.58-64
    • /
    • 2003
  • With the 1 ton/day-class entrained-bed gasification system, heavy residual oil from local refinery was gasified at the operating conditions of 1,000~1,20$0^{\circ}C$ and 3 $kg_f$/$\textrm{cm}^2$ in order to determine the variation of syngas composition, carbon conversion, and cold gas efficiency. Produced syngas consists of mainly CO, H$_2$, $CO_2$, and the methane concentrations. Results yielded a maximum syngas composition of 45% H$_2$ and 26%, CO at the 31 kg/hr feeding condition. The maximum carbon conversion and cold gas efficiency were 87% and 68%, respectively at the feeding conditions of 20 kg/hr and oxygen/feed ratio of 1.2. When oxygen feeding amount that is one of the most important operating parameter in gasification was increased, concentration of hydrogen in the syngas is greatly increased comparing to the concentration of CO and $CO_2$. The temperature exhibited about 11$0^{\circ}C$ raise while oxygen/feed ratio changed from 0.6 to 1.2. Methane concentration showed enhanced dropping rate with increase in gasifier temperature and the useful relationship between the gasifier temperature and methane concentration existed such that it can be employed as an indirect measure of inside gasifier temperature.

Seasonal Variations of Direct Solar Irradiance with Ground and Air Atmospheric Data Fusion for Peninsular Type Coastal Area (지상 및 고도별 대기측정 자료 융합을 이용한 반도형 해안지역의 직달일사량 계절 변화 연구)

  • Choi, Ji Nyeong;Lee, Sanghee;Seong, Sehyun;Ahn, Ki-Beom;Kim, Sug-Whan;Kim, Jinho;Park, Sanghyun;Jang, Sukwon
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.3
    • /
    • pp.411-423
    • /
    • 2020
  • Localized solar irradiance is normally derived from atmospheric transmission influenced by atmospheric composition and conditions of the target area. Specially, for the area with complex coastal lines such as Taean gun, the accurate estimation of solar irradiance requires for in depth analysis of atmospheric transmission characteristics based on the localized vertical profiles of the key atmospheric parameters. Using MODTRAN (MODerate resolution atmospheric TRANsmission) 6, we report a computational study on clear day atmospheric transmission and direct solar irradiance estimation of Taean gun using the data collected from 3 ground stations and radiosonde measurement over 93 clear days in 2018. The MODTRAN estimated direct solar irradiance is compared with the measurement. The results show that the normalized residual mean (NRM) is 0.28 for the temperature based MODTRAN atmospheric model and 0.32 for the pressure based MODTRAN atmospheric model. These values are larger than 0.1~0.2 of the other study and we understand that such difference represents the local atmospheric characteristics of Taean gun. The results also show that NRM tends to increase noticeably in summer as the temperature increases. Such findings from this study can be very useful for estimation and prediction of the atmospheric condition of the local area with complex coastal lines.

A Study on Safety Estimation of Railroad Wheel (컨테이너 철도차륜의 안전성 평가에 관한 연구)

  • Lee, Dong-Woo;Kim, Jin-Nam;Cho, Seok-Swoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.4
    • /
    • pp.1178-1185
    • /
    • 2010
  • Recently, high speed of container freight cars is causing fatigue damage of wheel. Sudden failure accidents cause a lot of physical and human damages. Therefore, damage analysis for wheel prevents failure accident of container freight car. Wheel receives mechanical and thermal loads at the same time while rolling stocks are run. The mechanical loads applied to wheel are classified by the horizontal load from contact of wheel and rail in curve line section and by the vertical force from rolling stocks weight. Also, braking and deceleration of rolling stocks cause repeated thermal load by wheel tread braking. Specially, braking of rolling stocks is frictional braking method that brake shoe is contacted in wheel tread by high breaking pressure. Frictional heat energy occurs on the contact surface between wheel tread and brake shoe. This braking converts kinetic energy of rolling stocks into heat energy by friction. This raises temperature rapidly and generates thermal loads in wheel and brake shoe. There mechanical and thermal loads generate crack and residual stress in wheel. Wetenkamp estimated temperature distribution of brake shoe experimentally. Donzella proposed fatigue life using thermal stress and residual stress. However, the load applied to wheel in aforementioned most researches considered thermal load and mechanical vertical load. Exact horizontal load is not considered as the load applied to wheel. Therefore, above-mentioned loading methods could not be applied to estimate actual stress applied to wheel. Therefore, this study proposed safety estimation on wheel of freight car using heat-structural coupled analysis on the basis of loading condition and stress intensity factor.