• Title/Summary/Keyword: residual condition

Search Result 898, Processing Time 0.022 seconds

Surgical correction in annuloaortic ectasia associated with ascending aortic aneurysm: one case report (거대상행핵대동맥루를 동반한 대동맥륜확장증 수술 치험: Cabrol씨 수술 1례 보)

  • 곽문섭
    • Journal of Chest Surgery
    • /
    • v.17 no.4
    • /
    • pp.753-761
    • /
    • 1984
  • Most patients having annuloaortic ectasia are associated with marked dilatation of the sinuses of Valsalva and the aortic annulus as well as the huge aneurysm of the ascending aorta. A 19 year old male patient complaining of tightness on left posterior chest wall underwent cardiac angiography in which demonstrated annuloaortic ectasia with ascending aortic aneurysm and aortic insufficiency. The patient had corrective operation replacing the ascending aorta and aortic valve with a composite graft[Dacron prosthesis containing a Bjork-Shiley aortic valve] within the aneurysmal sac. The coronary orifices were anastomosed to the tubular Dacron prosthesis [30 mm in diameter] by means of a second smaller Gore-Tex tube [8mm in diameter]. The aneurysmal sac was trimmed by removing the redundant wall and then wrapped outer wall of the Dacron prosthesis. Postoperatively, mediastinal bleeding was temporarily observed in the operative day and satisfactory blood pressure was maintained with small dose of dopamine. One week later, large amount of serous effusion was drained out of the retrosternal space making partial disruption of the skin which was healed well by daily local dressing. The patient discharged in good condition on postoperative 29th day with no residual complications and is doing very well on the 4 months follow-up.

  • PDF

A Study on the Control System of Myoelectric Hand Prosthesis (근전의수의 제어시스템에 관한 연구)

  • Choi, Gi-Won;Chu, Jun-Uk;Choe, Gyu-Ha
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.1
    • /
    • pp.214-221
    • /
    • 2007
  • This paper presents a myoelectric hand prosthesis(MHP) with two degree of freedom(2-DOF), which consists of a mechanical hand, a surface myoelectric sensor(SMES) for measuring myoelectric signal, a control system and a charging battery. The actuation for the 2-DOF hand functions such as grasping and wrist rotation was performed by two DC-motors, and controlled by myoelectric signal measured from the residual forearm muscle. The grip force of the MHP was automatically changed by a mechanical automatic speed reducer mounted on the hand. The skin interface of SMES was composed of the electrodes using the SUS440 metal in order to endure a wet condition due to the sweat. The sensor was embedded with a amplifier and a filter circuit for rejecting the offset voltage caused by power line noises. The control system was composed of the grip force sensor, the slip sensor, and the two controllers. The two controllers were made of a RISC-type microprocessor, and its software was executed on a real-time kernel. The control system used Force Sensing Resistors, FSR, as slip pick-ups at the fingertip of a thumb and the grip force information was obtained from a strain-gauge on the lever of the MHP. The experimental results were showed that the proposed control system is feasible for the MHP.

Effect of long-term thermal aging on the microstructural and mechanical characteristics of nickel-based alloy weldment (니켈계 합금 용접부의 미세조직 및 기계적 특성에 대한 장기 열적 시효의 영향)

  • Yoo, Seung Chang;Ham, Junhyuk;Kim, Ji Hyun
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.12 no.1
    • /
    • pp.41-48
    • /
    • 2016
  • To investigate the effect of long-term thermal aging on the microstructural and mechanical characteristics of weldment made of nickel base alloy and its weld metal, an accelerated heat treatment was applied to simulate the process of long-term thermal aging in the operating condition of nuclear power plant. A representative nickel-based weldment with Alloy 600 and Alloy 182 was fabricated and heat-treated at $400^{\circ}C$ for 1,713 h and 3,427 h to simulate the thermal aging for the period equivalent to 15 and 30 years in operating pressurized water reactors, respectively. The microstructural and mechanical characteristics were analyzed by using optical microscopy, scanning electron microscopy and Vickers microhardness measurement. Changes were observed in precipitation behavior and microhardness of each specimen, and these changes were mainly attributed to the change in precipitated morphology and residual stress across the weld during the thermal aging process.

Drop Performance Test of Control Rod Assembly for Prototype Gen-IV Sodium-cooled Fast Reactor (PGSFR 제어봉집합체 낙하성능시험)

  • Lee, Young Kyu;Kim, Hoe Woong;Lee, Jae Han;Koo, Gyeong Hoi;Kim, Jong Bum;Kim, Sung Kyun
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.12 no.1
    • /
    • pp.134-140
    • /
    • 2016
  • The Control Rod Assembly (CRA) controls the reactor power by adjusting its position in the reactor core during normal operation and should be quickly inserted into the reactor core by free drop under scram condition to shut down chain reactions. Therefore, the drop time of the CRA is one of important factors for the safety of the nuclear reactor and must be experimentally verified. This study presents the drop performance test of the CRA which has been conceptually designed for the Proto-type Generation IV Sodium-cooled Fast Reactor. During the test, the CRA was free dropped from a height of 1 m under different flow rate conditions and its drop time was measured. The results showed that the drop time of the CRA increased as the flow rate increased; the average drop times of the CRA were approximately 1.527 seconds, 1.599 seconds and 1.676 seconds at 0%, 100% and 200% of design flow rates, respectively.

Spinal Epidural Hematoma after Pain Control Procedure

  • Nam, Kyoung-Hyup;Choi, Chang-Hwa;Yang, Moon-Seok;Kang, Dong-Wan
    • Journal of Korean Neurosurgical Society
    • /
    • v.48 no.3
    • /
    • pp.281-284
    • /
    • 2010
  • Spinal epidural hematoma is a rare complication associated with pain control procedures such as facet block, acupuncture, epidural injection, etc. Although it is an uncommon cause of acute myelopathy, and it may require surgical evacuation. We report four patients with epidural hematoma developed after pain control procedures. Two procedures were facet joint blocks and the others were epidural blocks. Pain was the predominant initial symptom in these patients while two patients presented with post-procedural neurological deficits. Surgical evacuation of the hematoma was performed in two patients while in remaining two patients, surgery was initially recommended but not performed since symptoms were progressively improved. Three patients showed near complete recovery except for one patient who recovered with residual deficits. Although, spinal epidural hematoma is a rare condition, it can lead to serious complications like spinal cord compression. Therefore, it is important to be cautious while performing spinal pain control procedure to avoid such complications. Surgical treatment is an effective option to resolve the spinal epidural hematoma.

An experimental study of behavior of defrosting on the fin-tube heat exchanger (핀-관 열교환기에 대한 제상 거동에 관한 실험적 연구)

  • Lee, Kwan-Soo;Kim, Kyu-Woo;Ji, Sung
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.6
    • /
    • pp.649-657
    • /
    • 1998
  • In this study, the effects of the various conditions of frosting and defrosting on the behavior of defrosting in a fin-tube heat exchanger have been examined experimentally. The electric heater is used for defrosting in a fin-tube heat exchanger It is shown that there are several local maxima in the water draining rate. The amount of residual water on the heat exchanger after the completion of defrosting is kept constant due to surface tension on the heat exchanger. Without considering the degradation of the thermal performance due to the frosting, the defrosting efficiency is improved with increasing amount of the frost irrespective of the frosting condition. The defrosting behavior is affected by the frosting density as well as the frost accumulation, which vary with the experimental operating conditions during the frosting period. The heat loss to the surrounding air decreases, and the melting and defrosting efficiencies show high values with decreasing heat input.

  • PDF

Effect of Spacer Grids on CHF at PWR Operating Conditions

  • Ahn, Seung-Hoon;Jeun, Gyoo-Dong
    • Nuclear Engineering and Technology
    • /
    • v.33 no.3
    • /
    • pp.283-297
    • /
    • 2001
  • The CHF in PWR rod bundles is usually predicted by the local flow correlation approach based on subchannel analysis while difficulty exists due to the existence of spacer grids especially with mixing vanes. In order to evaluate the effect of spacer grids on CHF, the experimental rod bundle data with various types of spacer grids were analyzed using the subchannel code, COBRA-IV-i. For the Plain grid data, a CHF correlation was described as a function of local flow conditions and heated length, and then the residuals of the CHF in mixing vaned grids predicted by the correlation were examined in various kinds of grids. In order to compensate for the residual, three parameters, distances between grids and from the last grids to the CHF site, and equivalent hydraulic diameter were introduced into a grid parameter function representing the remaining effect of spacer grids predicted most of the CHF data points in plaing grids within $\pm$20 percent error band. Good agreement with the CHF data was also shown when the grid parameter function for mixing vaned grids of a specific design was used to compensate for the residuals of the CHF data predicted by the correlation.

  • PDF

IMPROVEMENTS OF CONDENSATION HEAT TRANSFER MODELS IN MARS CODE FOR LAMINAR FLOW IN PRESENCE OF NON-CONDENSABLE GAS

  • Bang, Young-Suk;Chun, Ji-Ran;Chung, Bub-Dong;Park, Goon-Cherl
    • Nuclear Engineering and Technology
    • /
    • v.41 no.8
    • /
    • pp.1015-1024
    • /
    • 2009
  • The presence of a non-condensable gas can considerably reduce the level of condensation heat transfer. The non-condensable gas effect is a primary concern in some passive systems used in advanced design concepts, such as the Passive Residual Heat Removal System (PRHRS) of the System-integrated Modular Advanced ReacTor (SMART) and the Passive Containment Cooling System (PCCS) of the Simplified Boiling Water Reactor (SBWR). This study examined the capability of the Multi-dimensional Analysis of Reactor Safety (MARS) code to predict condensation heat transfer in a vertical tube containing a non-condensable gas. Five experiments were simulated to evaluate the MARS code. The results of the simulations showed that the MARS code overestimated the condensation heat transfer coefficient compared to the experimental data. In particular, in small-diameter cases, the MARS predictions showed significant differences from the measured data, and the condensation heat transfer coefficient behavior along the tube did not match the experimental data. A new method for calculating condensation heat transfer coefficient was incorporated in MARS that considers the interfacial shear stress as well as flow condition determination criterion. The predictions were improved by using the new condensation model.

Effect of Temperature on the Micro-scale Adhesion Behavior of Thermoplastic Polymer Film (열가소성 폴리머 필름의 마이크로 점착 거동에 대한 온도의 영향)

  • Kim, Kwang-Seop;Heo, Jung-Chul;Kim, Kyung-Woong
    • Tribology and Lubricants
    • /
    • v.25 no.2
    • /
    • pp.86-95
    • /
    • 2009
  • Adhesion tests were carried out in order to investigate the effect of temperature on the adhesion behavior between a PMMA film and a fused silica lens in the micro scale. For the tests, a microtribometer system was specially designed and constructed. The pull-off forces on the PMMA film were measured under atmospheric condition as the temperature of the PMMA film was increased from 300 K to 443 K and decreased to 300 K. The contact area between the PMMA film and the lens was observed during the test. The adhesion behavior was changed with the change of the PMMA surface state as the temperature increased. In glassy state below 363 K, the pull-off force did not change with the increase of temperature. In rubbery state from 383 K to 413 K, the pull-off force increased greatly as the temperature increased. In addition, the area of contact was enlarged. In viscous state above 423 K, the fingering instability was observed in the area of contact when the PMMA film contacted with the lens. It was also found that the adhesion behavior can be varied with the thermal history of the PMMA film. The residual solvent in the PMMA film could emerge to the PMMA surface due to the heating and reduced the pull-off force.

An Experimental study on Improvement of Mechanical Press-Joining Strength of the Spin Drum Seaming Division in Washing Machine (스핀드럼 시밍부의 기계적 프레스 접합강도 향상에 관한 실험적 연구)

  • Kim, E.S.;Kim, B.M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.127-131
    • /
    • 2006
  • There are being a lot of studies for achievement of high speed Dehydration, high-strength and Lightweight of washing machine in the latest washing machine business. It is essential that Press-joining Strength of Spin Drum Seaming division is improved .to attain that target. Generally, we are using Mechanical press-joining by Seaming and T.I.G (Tungsten Inert Gas) welding among part joint method. Mechanical press-joining method that is mainly using for Stainless Steel (STS430) Drum have lots of merit that consumption of energy is low more than welding and production costs cut down and generation of the corrosion is solved by removing weld zone defect and materials having different properties are enable to join without special equipment. But, it is difficult to realize joint strength required at high speed operation because joint strength of mechanical press-joining method is low remarkably in comparison with welding. Also, there are a lot of analysis difficulties and very limited research is under way due to the dynamic factor such as multistage plastic working, elastic recovery, residual stress etc. The results of this study show optimal joining condition for mechanical press-joining by performing lots of tensile joining strength test with various specimen under multi-change of important design factor such as seaming width, bead area and bead depth etc.

  • PDF