• Title/Summary/Keyword: residual condition

Search Result 898, Processing Time 0.028 seconds

A Study on the Coagulation of Aquatic Humic Acid and Reducing Residual Aluminum (수중 Humic Acid의 효율적 응집처리와 잔류알루미늄 감소방안에 관한 연구)

  • 김수연;정문호;두옥주
    • Journal of Environmental Health Sciences
    • /
    • v.24 no.2
    • /
    • pp.38-46
    • /
    • 1998
  • The purpose of this study is to evaluate and compare the effective coagulation of commercial humic acid which is well known as major precursor of trihalomethane, with LAS and PAC and to quantify the residual aluminum in the treated water. Then the optimum pH, the dosage of coagulant were determined. 1. Humic acid concentrati6n, UV absorbance and color were well correlated and UV absorbance(254 nm) and color seem to be used in quntificative analysis of humic acid of same kind. 2. Optimal dosage of LAS and PAC increase as humic acid concentration increases. And optimal pH range for coagulation using LAS is pH 5.5-7.0 and pH 3.5-6.5 for PAC. Within these ranges the removal efficiency is 90-99%. 3. The results of quantification of residual aluminum in treated water shows that minimal aluminum remains on the optimal coagulation condition. But the residual aluminum increses as the dosage of coagulant is beyond the optimal range. Thus the dosage of coagulant should be chosen with the condition on which humic acid removal is maximum and the residual aluminum concentration is minimum. 4. In the water treatment process the raw water pH range is 6.5-8.0, and it seems to be possible to remove humic acid by charge neutralization not by sweep floc. But it should be considered that different commercial humic acids have different physical and chemical characteristics.

  • PDF

Effect of Residual Soils on Yellowing of White Cotton Fabrics after Repeated Home Laundry (가정세탁에서 잔류오구가 백색 면직물의 황변에 미치는 영향)

  • 이일심
    • Journal of the Korean Home Economics Association
    • /
    • v.35 no.2
    • /
    • pp.137-145
    • /
    • 1997
  • The effect of accumulated residual soils in wear and wash tests on yellowing of white dress shirt was studied. The test samples after repeated home laundry at 20 households for six months were measured residual soils, $\Delta$b*.As well as, correlation between residual soils and yellowing was also examined. As a result, residual soils increased with number of wear and wash cycles, a little decreased in using with enzyme detergent. The b* value of test samples with fluorescent whitening agent were distributed -12.850~0.291. Correlation coefficient between sebum soils, protein soils and $\Delta$b* was 0.98, 0.58. Ultimately, residual sebum soils have more higher correlation than residual protein soils. Hence, residual sebum soils have more effect on yellowing than residual protein soils. therefore, effective a device as improvement of laundry condition and textile development needs for decrease of sebum soils.

  • PDF

Prediction Model for Relaxation of Welding Residual Stress under Fatigue Loads (피로하중하 용접잔류응력 이완 추정모델)

  • 한승호;신병천
    • Journal of Welding and Joining
    • /
    • v.20 no.3
    • /
    • pp.84-90
    • /
    • 2002
  • The strength and the life of welded components are affected extensively by the residual stresses distributed around their weldments not only under static loads, but also fatigue loads. The residual stress can be superimposed with externally applied loads, so that unexpected deformations and failures of members will be occurred. These residual stresses are not kept constant, but relaxed or redistributed during in service. Under static loads the relaxation takes place when the external stress superimposed with the residual stress exceeds locally the yield stress of material used. It is shown that under fatigue loads the residual stress is considerably relieved by the first or flew cycle loading, and then gradually relaxed with increasing loading cycles. In this study the phenomenon and mechanism of the stress relaxation by mechanical means were investigated and a model to predict quantitatively the residual stress relaxation for the case of static and fatigue loading condition was proposed.

Effect of Heat Treatment Conditions and Densities on Residual Stresses at Hybrid (FLN2-4405) P/M Steels

  • Kafkas, Firat;Karatas, Cetin;Saritas, Suleyman
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.566-567
    • /
    • 2006
  • The characteristics of residual stresses occurring in PM steel based nickel (FLN2-4405) was investigated. The measurements of residual stresses were carried out by electrochemical layer removal technique. The values and distributions of residual stresses occurring in PM steel processed under various densities and heat treatment conditions were determined. In most of the experiments, tensile residual stresses were recorded in surface of samples. The residual stress distribution on the surface of the PM steels is affected by the heat treatment conditions and density. Maximum values of residual stresses on the surface were observed sinter hardened condition and $7.4\;g/cm^3$ density. Minimum level of recorded tensile residual stresses are150 MPa and its maximum level is 370 MPa.

  • PDF

A Study on the Residual Astigmatism Appeared after Operating ICL Lens (ICL 렌즈 시술 후 나타나는 잔류난시에 대한 연구)

  • Kim, Dook-Hoon;Lee, Dong-Hee
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.13 no.4
    • /
    • pp.155-160
    • /
    • 2008
  • Purpose: To develop a program for analyzing the condition of implanted ICL lenses in case the residual astigmatism appears after the implantation. Methods: From analyzing the measured residual astigmatism after operating ICL lens, we could induce formulas that produce the rotating angle and the corresponding MR prescription of the implanted ICL lens. Using the Delphi 6.0 language, we could develop a program by which we conveniently confirm, in the window screen visually, the rotating angle and the corresponding MR prescription of the implanted ICL lens calculated by these formulas. Results: We induced formulas that produce the rotating angle and the corresponding MR prescription of the implanted ICL lens by analyzing the measured residual astigmatism after operating ICL lens and developed a program which can analyze the condition of the implanted ICL lens. By this program we could easily analyze the condition of the implanted ICL lens. Conclusions: Judging from the results of applying this program to many clinical cases, we could conclude that this program is very effective in analyzing the condition of implanted ICL lenses.

  • PDF

A Study on the Relationship between Residual Stress and Wear Peroperty in Hypereutectic Al-Si Alloys (과공정 Al-Si 합금의 마모 특성에 미치는 잔류응력의 영향에 관한 연구)

  • Kim, Heon-Joo;Kim, Chang-Gyu
    • Journal of Korea Foundry Society
    • /
    • v.20 no.2
    • /
    • pp.89-96
    • /
    • 2000
  • The effects of modification processing on the refinement of primary Si and the wear behavior of hyper-eutectic Al-Si alloys have been mainly investigated. Refining effects of primary Si in Al-17%Si alloy was more efficient than that of B.390 alloy. Optimum condition of getting the finest primary Si microstructure was when AlCuP modifier is added into the melt at $750^{\circ}C$ and held it at $700^{\circ}C$ for 30 minutes. Wear loss in the specimens of as-cast condition decreases as the size of primary Si decreases, in the order of B.390 alloy, B.390 alloy with AlCuP addition, Al-17%Si alloy and Al-17%Si alloy with AlCuP addition. Wear loss in the aged condition of Al-17%Si alloy, B.390 alloy and B.390 alloy with AlCuP addition decreased due to the increase of compressive residual stress in the matrix by the aging treatment. While, wear loss increased in the aged specimens of Al-17%Si alloy with AlCuP addition and Hepworth addition in which compressive residual stress decreases by the aging treatment. Therefore, it is assumed that higher compressive residual stress in the matrix can reduce the wear loss in composite materials such as hyper-eutectic Al-Si alloys.

  • PDF

A Effect of Shot Peening for Fatigue Life of Spring Steel for Vessel Application (선박용 스프링강의 피로수명에 미치는 쇼트피닝의 영향)

  • Ryu Hyung-Ju;Park Keyung-Dong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.4
    • /
    • pp.426-435
    • /
    • 2005
  • The lightness of components required in automobile and machinery industries is requiring high strength of components. Therefore this requirement is accomplished as the process of shot-peening method that the compressive residual stress is made on the metal surface as one of various improvement methods. Special research is, therefore, needed about compressive residual stress on the metal surface in the process of shot-peening method. Therefore, in this paper the effect of compressive residual stress of spring steel(JISG SUP-9) by shot-peening on fatigue crack growth characteristics in environmental condition(temperature) and mechanical condition(shot velocity, stress ratio) was investigated with considering fracture mechanics. By using the methods mentioned above, the following conclusions have been drawn. (1) The fatigue crack growth rate(da/dN) of the shot-peened material was lower than that of the un-peened one. In high temperature range. fatigue crack growth rate decreased with increasing temperature range, while fatigue crack growth rate increased by decreasing temperature in low temperature. (2) Fatigue life shows more improvement in the shot-peened material than in the un-peened material. And compressive residual stress of surface on the shot-peen processed operate resistance force of fatigue crack propagation.

Analysis of residual stress of Nitinol by surface Polishing Method (표면 연마 방법에 따른 니티놀 잔류응력 분석)

  • Jeong, Ji-Seon;Hong, Kwang-Pyo;Kim, Woon-yong;Cho, Myeong-Woo
    • Design & Manufacturing
    • /
    • v.11 no.2
    • /
    • pp.51-56
    • /
    • 2017
  • Nitinol, a shape memory alloy (SMA), is manufactured from titanium and nickel and it used in various fields such as electrical applications, micro sensors. It is also recommended as a material in medical for implant because it has excellent organic compatibility. Nitinol is intended to be inserted into the human body, products require a high-quality surface and low residual stress. To overcome this problems, explore electrolyte polishing (EP) is being explored that may be appropriate for use with nitinol. EP is a particularly useful machining method because, as a non contact machining method, it produces neither machining heat nor internal stress in the machined materials. Sandpaper polishing is also useful machining method because, as a contact machining method, it can easily good surface roughness in the machined materials. The electrolyte polishing (EP) process has an effect of improving the surface roughness as well as the film polishing process, but has a characteristic that the residual stress is hardly generated because the work hardened layer is not formed on the processed surface. The sandpaper polishing process has the effect of improving the surface roughness but the residual stress remains in the surface. We experimented with three conditions of polishing process. First condition is the conventional polishing. Second condition is the electrochemical polishing(EP). And Last condition is a mixing process with the conventional polishing and the EP. Surface roughness and residual stress of the nitinol before a polishing process were $0.474{\mu}mRa$, -45.38MPa. Surface roughness and residual stress of the nitinol after mixing process of the conventional polishing and the EP were $1.071{\mu}mRa$, -143.157MPa. Surface roughness and residual stress of the nitinol after conventional polishing were $0.385{\mu}mRa$ and -205.15MPa. Surface roughness and residual stress of sandpaper and EP nitinol were $1.071{\mu}mRa$, -143.157MPa. The result shows that the EP process is a residual stress free process that eliminates the residual stress on the surface while eliminating the deformed layer remaining on the surface through composite surface machining rather than single surface machining. The EP process can be used for biomaterials such as nitinol and be applied to polishing of wafers and various fields.

A Study on the Characteristics of Residual Stress in the Manufacturing Process of AISI 1536V and AISI A387 (제조공정에 따른 강종별 잔류응력 특성에 관한 연구; AISI 1536V, AISI A387)

  • Hwang, Sung-Kug;Moon, Jeong-Su;Kim, Han Joo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.9
    • /
    • pp.100-106
    • /
    • 2020
  • This study analyzes the residual stress of AISI 1536V for an engine shaft of the shipbuilding industry and AISI A387 for a reactor shell of the chemical refining industry by the hole drilling method with a strain gauge rosette, which transforms fine mechanical changes into electrical signals. Tensile residual stress is generated in the forging and heat treatment process because specimens are affected by thermal stress and metal transformation stress. In the heat treatment process, the residual stress of AISI A387 is almost 170% the yield strength at 402 MPa. Since during the machining process, variable physical loads are applied to the material, compressive residual stress is generated. Under the same condition, the mechanical properties greatly affect the residual stress during the machining process. After the stress-relieving heat treatment process, the residual stress of AISI A387 is reduced below the yield strength at 182 MPa. Therefore, it is necessary to control the temperature, avoid rapid heat change, and select machining conditions depending on the mechanical properties of materials during manufacturing processes. In addition, to sufficiently reduce the residual stress, it is necessary to study the optimum condition of the stress-relieving heat treatment process for each material.

The relationship between residual stresses and transverse weld cracks in the plate (후판용접부의 잔류응력과 횡균열의 상관관계)

  • 이해우;강성원;박종진
    • Proceedings of the KWS Conference
    • /
    • 2003.05a
    • /
    • pp.263-265
    • /
    • 2003
  • The transverse crack, a type of cold crack, occurs perpendicular to the axis of the weld interface, longitudinal residual stresses ($\sigma$k direction) are more important in transverse crack occurrence from my own experience. Specimens were fabricated and welded under actual construction conditions, and then residual stresses of longitudinal stresses were measured for different welding conditions with SAW and FCAW process. The residual stress values for the specimen welded Interpass temperature below 30$^{\circ}C$ was higher than the specimen welded interpass temperature of 100~120$^{\circ}C$. And also the residual stress values for a specimen measured at weld surface, as welded condition, was higher than that of longitudinal residual stresses that was measured from a small test piece, due to the residual stress was relieved in the process of the cutting and machining. Transverse weld cracks were detected in the area of the maximum residual stresses both SAW and FCAW process.

  • PDF