• Title/Summary/Keyword: residual condition

Search Result 898, Processing Time 0.026 seconds

ENAMEL SURFACE EVALUATION ON VARIOUS REMOVAL TECHNIQUE OF BRACKET (DBS): A STUDY WITH THE SCANNING ELECTRON MICROSCOPY (수종의 BRACKET(DBS)제거방법에 따른 법랑질 표면에 대한 주사전자현미경적 연구)

  • Song, Jung-Kook;Sohn, Byung-Hwa
    • The korean journal of orthodontics
    • /
    • v.15 no.2
    • /
    • pp.271-277
    • /
    • 1985
  • With modification of the acid etch technique and improvements of the physical and mechanical properties of the acrylic resin, the removal of directly bonded attachments and the finishing of the underlying enamel have become an acute clinical problem. This study was to evaluation the efficacy of recently introduced instrumentation and techniques to remove bonded brackets and residual resin, and restore the affected enamel surface to an acceptable clinical condition. Fortyeight premolar which were scheduled for extraction for orthodontic purposes were bonded with brackets using super-C ortho. Four additional premolars with untreated surfaces were used as controls. After one weak the brackets were removed and the residual resin removed by hand scaler, green stone, green rubber wheel, sandpaper disc, tungsten carbide bur, Sof-lex disc. Half the experimental teeth were given a final pumicing and then all were extracted and stored in 50 percent ethanol. The scanning electron microscopy was used to evaluated the enamel surface. Following results were obtained; 1. A satisfactory result was obtained by means of the Sof-lex disc. 2. The order of the scratch formation was the procedure using hand scaler, green atone, tungsten carbide bur, sandpaper disc, green rubber wheel, and Sof-lex disc. 3. The procedures using green stone and tungsten carbide bur showed many groove formations and the other procedures showed none. 4. final pumicing serves effectively to remove residual adhesive and restore the enamel surface.

  • PDF

Effect of Harmonics on Residual Current Protective Devices (고조파가 누전차단기에 미치는 영향)

  • Jeon, Jeong-Chay;Lee, Sang-Ick;Yoo, Jae-Geun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.3
    • /
    • pp.84-89
    • /
    • 2006
  • Tripping of residual current protective devices(RCPDs) caused by harmonics has been continuously reported, but no literature is available on the behavior of RCPDs caused by harmonics. This paper, in order to find out the effects of harmonics on RCPDs, investigated the present condition on malfunction of RCPDs and measured harmonics at buildings where nuisance tripping of RCPDs was often occurred. Also, the operational characteristics of RCPDs were tested by the harmonics synthesizer that can generate distorted waveform. Results of experiment detected that there was minimum tripping current of RCPDs when third harmonic added to the fundamental frequency. And it was found that the leakage current to cause tripping of RCPDs increased with more higher order harmonics added to the fundamental frequency.

Low-Complexity MIMO Detection Algorithm with Adaptive Interference Mitigation in DL MU-MIMO Systems with Quantization Error

  • Park, Jangyong;Kim, Minjoon;Kim, Hyunsub;Jung, Yunho;Kim, Jaeseok
    • Journal of Communications and Networks
    • /
    • v.18 no.2
    • /
    • pp.210-217
    • /
    • 2016
  • In this paper, we propose a low complexity multiple-input multiple-output (MIMO) detection algorithm with adaptive interference mitigation in downlink multiuser MIMO (DL MU-MIMO) systems with quantization error of the channel state information (CSI) feedback. In DL MU-MIMO systems using the imperfect precoding matrix caused by quantization error of the CSI feedback, the station receives the desired signal as well as the residual interference signal. Therefore, a complexMIMO detection algorithm with interference mitigation is required for mitigating the residual interference. To reduce the computational complexity, we propose a MIMO detection algorithm with adaptive interference mitigation. The proposed algorithm adaptively mitigates the residual interference by using the maximum likelihood detection (MLD) error criterion (MEC). We derive a theoretical MEC by using the MLD error condition and a practical MEC by approximating the theoretical MEC. In conclusion, the proposed algorithm adaptively performs interference mitigation when satisfying the practical MEC. Simulation results show that the proposed algorithm reduces the computational complexity and has the same performance, compared to the generalized sphere decoder, which always performs interference mitigation.

Development of ZnO Varistor for Distribution Surge Arrester (18kV, 5kA) (배전급 피뢰기(18kV, 5kA)용 ZnO 바리스터 소자 개발)

  • 박춘현;윤관준;조이곤;정세영;서형권
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.212-216
    • /
    • 2000
  • ZnO varistors for distribution surge arrester (18kV, 5kA) were developed and tested microstructure and electrical characteristics. Microstructure of ZnO varistor was consisted of ZnO grain, spinel phase and Bi-rich phase. Average grain size of ZnO varistor was $\mu\textrm{m}$ Reference voltage and lightning impulse residual voltage of ZnO varistor exhibited a good haracteristics above 5.5kV and below 11.56kV, respectively. Consequently, discharge capacity which is the most important characteristics of ZnO varistor for surge arrester exhibited excellent properties above 70kA at twice high-current impulse test. Moreover, variation rate of reference voltage and lightning impulse residual voltage showed below 5% and 2% after high-current impulse test, respectively. Leakage current and watt loss of ZnO varistor will not increase during accelerated aging test at stress condition, such as 3.213kV/$115^{\circ}C$/1000h.

  • PDF

Fire Resistance Studies on High Strength Steel Structures

  • Wang, Wei-Yong;Xia, Yue;Li, Guo-Qiang
    • International Journal of High-Rise Buildings
    • /
    • v.7 no.4
    • /
    • pp.287-298
    • /
    • 2018
  • High strength steels have been widely applied in recent years due to high strength and good working performance. When subjected to fire conditions, the strength and elastic modulus of high strength steels deteriorate significantly and hence the load bearing capacity of structures reduces at elevated temperatures. The reduction factors of mechanical properties of high strength steels are quite different from mild steels. Therefore, the fire design methods deduced from mild steel structures are not applicable to high strength steel structures. In recent ten years, the first author of this paper has carried out a lot of fundamental research on fire behavior of high strength steels and structures. Summary of these research is presented in this paper, including mechanical properties of high strength steels at elevated temperature and after fire exposure, creep response of high strength steels at elevated temperature, residual stresses of welded high strength steel member after fire exposure, fire resistance of high strength steel columns, fire resistance of high strength steel beams, local buckling of high strength steel members, and residual strength of high strength steel columns after fire exposure. The results show that the mechanical properties of high strength steel in fire condition and the corresponding fire resistance of high strength steel structures are different from those of mild steel and structures, and the fire design methods recommended in current design codes are not applicable to high strength steel structures.

Tide and tidal current around the sea route of Jinhae and Masan passages (진해 및 마산항로 주변해역의 조석·조류특성)

  • CHOO, Hyo-Sang
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.57 no.1
    • /
    • pp.45-56
    • /
    • 2021
  • In order to understand the tide and current around the sea route of Jinhae and Masan passages, tide measurement and 2D numerical model experiments of tidal current and residual flow were carried out. Tide is composed of 84% of semi-diurnal tide, 11% of diurnal tide and 4% of shallow water tide, respectively. Phase lags of the major components for the tide around the study area have little differences. The flows are reversing on the whole, but have rotational form around Jamdo Island, south of Masan passage in spring tide and Ungdo Island, north of Masan passage in middle and neap tide. Current flows the speed of 50 cm/s in the sea areas near small islands, 5 cm/s in Jinhae harbor, Hangam bay and near Jinhae industrial complex and 20-30 cm/s in Jinhae passage, Budo channel and Masan passage. Tide-induced topographical eddies are formed near small islands, but few eddies exist and the flow rate of less than 5 cm/s tidal residual current formed in Jinhae and Masan passages. The flows in Jinhae and Masan passage give a good condition for a passage into Jinhae and Masan harbor.

Study on the mechanical behaviors of timber frame with the simplified column foot joints

  • Yang, Qing-shan;He, Jun-xiao;Wang, Juan
    • Structural Engineering and Mechanics
    • /
    • v.77 no.3
    • /
    • pp.383-394
    • /
    • 2021
  • Column foot in traditional Chinese timber structures may be subjected to be uplifted due to the lateral load and subsequently reset under the vertical loads. The residual moment of the rocking column foot is the most important parameter representing the mechanical behaviors of column foot, and the simplification of joints is the basis of structural analysis of whole structure. The complicated mechanical behaviors of joint and the modeling of the column foot joint has been undertaken historically based on the experiments and numerical simulation. On the condition of limited application range of those models, a lack of simplified model to represent the mechanical behaviors of joint deserves attentions. There is a great need to undertake theoretical studies to derive the residual moment and make better simplified model of the joint. This paper proposes the residual moment and equivalent simplified model of the rotational stiffness for column foot joint. And, the timber frame is established based on the simplified model, which is verified by solid finite element model. Results show that a mutual agreement on the mechanical behaviors of the timber frame is obtained between the simplified model and the solid finite element model. This study can serve as the references of the structural analysis for the traditional timber structures.

Insights from LDPM analysis on retaining wall failure

  • Gili Lifshitz Sherzer;Amichai Mitelman;Marina Grigorovitch
    • Computers and Concrete
    • /
    • v.33 no.5
    • /
    • pp.545-557
    • /
    • 2024
  • A real-case incident occurred where a 9-meter-high segment of a pre-fabricated concrete separation wall unexpectedly collapsed. This collapse was triggered by improperly depositing excavated soil against the wall's back, a condition for which the wall segments were not designed to withstand lateral earth pressure, leading to a flexural failure. The event's analysis, integrating technical data and observational insights, revealed that internal forces at the time of failure significantly exceeded the wall's capacity per standard design. The Lattice Discrete Particle Model (LDPM) further replicates the collapse mechanism. Our approach involved defining various parameter sets to replicate the concrete's mechanical response, consistent with the tested compressive strength. Subsequent stages included calibrating these parameters across different scales and conducting full-scale simulations. These simulations carried out with various parameter sets, were thoroughly analyzed to identify the most representative failure mechanism. We developed an equation from this analysis that quickly correlates the parameters to the wall's load-carry capacity, aligned with the simulation. Additionally, our study examined the wall's post-peak behavior, extending up to the point of collapse. This aspect of the analysis was essential for preventing failure, providing crucial time for intervention, and potentially averting a disaster. However, the reinforced concrete residual state is far from being fully understood. While it's impractical for engineers to depend on the residual state of structural elements during the design phase, comprehending this state is essential for effective response and mitigation strategies after initial failure occurs.

Evaluation of Insecticidal Activity of Pesticides Against Hemipteran Pests on Apple Orchard (사과과수원의 노린재류에 대한 농약의 생물활성 평가)

  • Lee, Sun-Young;Yoon, Changmann;Do, Yun-Su;Lee, Dong-Hyuk;Lee, Jung-Sup;Choi, Kyung-Hee
    • The Korean Journal of Pesticide Science
    • /
    • v.19 no.3
    • /
    • pp.264-271
    • /
    • 2015
  • Stink bugs do damage on various crops including upland crops and tree fruits. Especially, yellow-brown stink bug (Halyomorpha halys ($St{\aa}l$)) and brown-winged green (Plautia stali) are severely damaged on apple orchard. Using seven insecticides - dinotefuran WP, etofenprox WP, chlorpyrifos WP, cabaryl WP, chlothianidin SC, flonicamid WG, and bifenthrin WG - registered on apple, contact and residual toxicities were tested on both male and female of P. stali and H. halys that preferred apple fruit. Contact toxicity of dinotefuran WP was excellent on male P. stali 48 hours after treatment (HAT) with 96.7% and significant on male Halyomorpha halys 48 HAT with 74.5% but the others had low effect. Contact toxicity on these stink bugs were higher in male than female. All insecticides except flonicamid, residual effects were all effective on both male and female of P. stali, while chlorpyrifos and bifenthrin were showed higher residual toxicity on both male and female of H. halys in laboratory condition. Two insecticides, chlorpyrifos and bifenthrin, were selected for the field test. Bifenthrin have a high residual effect on P. stali until 5 days after treatment, but have a low residual toxicity on H. halys in the field test. Chlorpyrifos showed higher residual toxicity in the laboratory, however, showed low residual efficacy on two species stink bug onto the field.

A Study on the Characteristics of the Residual Stress Distribution of Steel Structural Members (용접(鎔接) 강구조(鋼構造) 부재(部材)의 잔류응력(殘留應力) 특성(特性)에 관한 연구(研究))

  • Chang, Dong Il;Kim, Doo Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.1
    • /
    • pp.93-101
    • /
    • 1987
  • Residual stresses have remained around welding areas of a steel structure member after welding operation. The major causes to occur these residual stresses are the local heat due to a welding, the heat stresses due to a irregular and rapid cooling condition, the material and rigidity of a steel structure. Ultimatly, these residual stresses have been known to decrease a brittle fracture strength, a fatigue strength, a buckling strength, dynamic properties, and the corrosion resistance of the material. This paper deals with the residual stresses on a steel structure member through experimental studies. SWS 58 plates were welded by the method of X-groove type. These plates were layed on the heat treatment at four different temperatures; $350^{\circ}C$, $500^{\circ}C$, $650^{\circ}C$ and $800^{\circ}C$. The resulting residual Stresses were measured by hole drilling method, and the followings were obtained. The residual stresses on the vicinity of a welding point were relieved most effectively at the temperature of $650^{\circ}C$, and these stresses relieved completly when the ratio of a hole diamerter to a hole depth became unity. Hardness test shows that the higher value of hardness at the heat affected zone dropped to belower as the temperature went up from $350^{\circ}C$ to $800^{\circ}C$. The Welding input heats have not influenced the magnitude of residual stresses at the input heat range between above and below one forth than standard.

  • PDF