• Title/Summary/Keyword: residual carbide

Search Result 70, Processing Time 0.022 seconds

Effect of Carbides on the Tensile Properties of 0.5C-17Cr-0.5Ni Martensitic Stainless Steel (0.5C-17Cr-0.5Ni 마르텐사이트계 스텐인리스강의 인장성질에 미치는 탄화물의 영향)

  • Kwon, Soon-Doo;Son, Dong-Wook;Kang, Chang-Yong
    • Journal of Power System Engineering
    • /
    • v.20 no.3
    • /
    • pp.11-16
    • /
    • 2016
  • The effect of carbides on the tensile properties in 0.5C-17Cr-0.5Ni martensitic stainless steel was studied. With the increase of austenitizing temperature, the volume fraction of residual carbide was decreased rapidly. In tempered specimens after quenching, the volume fraction of total carbide was decreased with the increase of austenitizing temperature. In tempered specimens after quenching, strength was decrease and elongation was increased with the increase of austenitizing temperature. Tensile strength was increase and elongation was decreased with the increase of volume fraction of residual and total carbides. With the increase of austenitizing temperature, the tensile properties of mod. 0.5C-17Cr-0.5Ni martensitic stainless was affected greatly by residual carbide than tempered carbide.

Effect of Laser Surface Modification of Cemented Carbide Substrates on the Adhesion of Diamond Films (Cemented Carbide기판의 레이저 표면 개질이 다이아몬드 박막의 접합력에 미치는 영향)

  • Lee, Dong-Gu
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.13 no.3
    • /
    • pp.170-176
    • /
    • 2000
  • A novel method for improving the adhesion of diamond films on cemented carbide tool inserts has been investigated. This method is based on the formation of a compositionally graded interface by developing a microrough surface structure using a pulsed laser process. Residual stresses of diamond films deposited on laser modified cemented carbides were measured as a function of substrate roughness using micro-Raman spectroscopy. The surface morphology and roughness of diamond films and cemented carbides were also investigated at different laser modification conditions. It was found that the increasing interface roughness reduced the average residual stress of diamond films, resulting in improved adhesion of diamond films on cemented carbides.

  • PDF

A Study on the Internal Grinding of Tungsten Carbide Materials to Improve the Machining Performance (초경합금재의 내면연삭에서 가공능률 향상에 관한 연구)

  • Heo, Seoung Jung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.6
    • /
    • pp.52-58
    • /
    • 1996
  • This paper described on the effect of residual stocks in internal grinding of tungsten carbide materials in order to improve the grinding efficiency as well as grinding accuracy. Through the fundamental investigation is carried out for tungsten carbide materials using electroplated diamond wheel, the residual stock after grinding process is effective to the grinding efficiency. The obtained results are as follows: (1) Under the depth of cut(t) is constant and decreasing the workpiece velocity(Vw), the residual stock after grinding is increased, but the difference is little less than the difference by table speed. (2) Increasing the wheel velocity, the residual stock after grinding is decreased. Therefore in order to minimize the residual stock, the wheel velocity should be increased as far as possible. (3) The surface roughness and out-of roundness increased with depth of cut and table speed, and decreased with wheel velocity, but it may as well adopt as much as possible under the dimensional tolerance which is required for high efficiency grinding. (4) In order to remove residual stock, the spark-out grinding shoule be done, and it also can be improved about 20~25% throughout spark-out grinding, and the number of optimal spark-out times were within 10 times.

  • PDF

A Fundamental Study on the Internal Grinding of Tungste Carbide Materials for Metal Mould to Improve the Machining Performance (금형용 초경합금재의 내면연삭 가공능률향상에 관한 기초적 연구)

  • 허성중;이규천;김영일;김원일
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.39-43
    • /
    • 1996
  • This paper described on the effect of residual stocks in internal grinding of tungsten carbide materials in order to improve the grinding efficiency as well as grinding accuracy. Though the fundamental investigation is carried out for tungsten carbide materials using electroplated diamond wheel, the residual stock after grinding process is effective to the grinding effciiency. The obtained results are as follows: (1) Under the depth of cut(t) is constant and decreasing the workpiece velocity(Vw), the resiudal stock after grinding is increased, but the difference is little less than the difference by table speed. (2) Increasing the wheel velocity, the residual stock after grinding is decreased. Therefore in order to minimize the residual stock, the wheel velocity should be increased as far as possible. (3) The surface foughness and out-of roundness increased with depth of cut and table speed, and decreased with wheel velocity, but it may as well adopt as much as polssible under the dimensional tolerance which is required for high efficiency grinding. (4) In order to remove residual stock, the spark-out grinding shoule be done, and it also can be improved about 20 .approx. 25% throughout spark-out grinding, and the number of optimal spark-out times were within 10 times.

  • PDF

Influences of Particle Property and Its Size Impact Damage and Strength Degradation in Silicon Carbide Ceramics (탄화규소 세라믹의 충격손상 및 강도저하에 미치는 입자의 재질 및 크기의 영향)

  • 신형섭;전천일랑;서창민
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.10
    • /
    • pp.1869-1876
    • /
    • 1992
  • The effect of particle property on FOD(foreign object damage) and strength degradation in structural ceramics especially, silicon carbide was investigated by accelerating a spherical particle having different material and different size. The damage induced showed significant differences in their patterns with increase of impact velocity. Also percussion cone was formed at the back part of specimen when particle size became large and its impact velocity exceeded a critical value. The extent of ring cracks was linearly related to particle size, however the impact of steel particle produced larger ring cracks than that of SiC particle. Increasing impact velocity the residual strength showed different degradation behaviors according to particle and its size. In the region the impact site represents nearly elastic deformation behavior, the residual strength was dependent upon the depth of cone crack regardless of particle size. However in elastic- plastic deformation region, the radial cracks led to rapid drop in residual strength.

ENAMEL SURFACE EVALUATION ON VARIOUS REMOVAL TECHNIQUE OF BRACKET (DBS): A STUDY WITH THE SCANNING ELECTRON MICROSCOPY (수종의 BRACKET(DBS)제거방법에 따른 법랑질 표면에 대한 주사전자현미경적 연구)

  • Song, Jung-Kook;Sohn, Byung-Hwa
    • The korean journal of orthodontics
    • /
    • v.15 no.2
    • /
    • pp.271-277
    • /
    • 1985
  • With modification of the acid etch technique and improvements of the physical and mechanical properties of the acrylic resin, the removal of directly bonded attachments and the finishing of the underlying enamel have become an acute clinical problem. This study was to evaluation the efficacy of recently introduced instrumentation and techniques to remove bonded brackets and residual resin, and restore the affected enamel surface to an acceptable clinical condition. Fortyeight premolar which were scheduled for extraction for orthodontic purposes were bonded with brackets using super-C ortho. Four additional premolars with untreated surfaces were used as controls. After one weak the brackets were removed and the residual resin removed by hand scaler, green stone, green rubber wheel, sandpaper disc, tungsten carbide bur, Sof-lex disc. Half the experimental teeth were given a final pumicing and then all were extracted and stored in 50 percent ethanol. The scanning electron microscopy was used to evaluated the enamel surface. Following results were obtained; 1. A satisfactory result was obtained by means of the Sof-lex disc. 2. The order of the scratch formation was the procedure using hand scaler, green atone, tungsten carbide bur, sandpaper disc, green rubber wheel, and Sof-lex disc. 3. The procedures using green stone and tungsten carbide bur showed many groove formations and the other procedures showed none. 4. final pumicing serves effectively to remove residual adhesive and restore the enamel surface.

  • PDF

Changes in Mechanical Properties of WC-Co by Ultrasonic Nanocrystal Surface Modification Technique (UNSM 기술을 이용한 초경의 기계적 특성변화)

  • Lee, Seung-Chul;Kim, Jun-Hyong;Kim, Hak-Doo;Choi, Gab-Su;Amanov, Auezhan;Pyun, Young-Sik
    • Tribology and Lubricants
    • /
    • v.31 no.4
    • /
    • pp.157-162
    • /
    • 2015
  • In this study, an ultrasonic nanocrystalline surface modification (UNSM) technique is applied to tungsten carbide-cobalt (WC-Co) to extend the service life of carbide parts used in press mold. The UNSM technique modifies the structure, reduces the surface roughness, increases the surface hardness, induces the compressive residual stress, and increases the wear resistance of materials by introducing severe plastic deformation. The surface roughness, hardness, and compressive residual stress of WC after UNSM treatment improve by about 42, 10, and 71%, respectively. A wear test under dry conditions is used to assess the effectiveness of the UNSM technique on the friction and wear behavior of WC. The UNSM technique is found to reduce the WC friction coefficient by approximately 21% and enhance the wear resistance by approximately 85%. The improved friction and wear behavior of WC may be mainly attributed to the increased hardness and compressive residual stress. Moreover, the WC specimen is treated by UNSM technique using three different WC, silicon nitride (Si3N4) and stainless steel (STS304) balls. The surface treated by WC balls shows the highest hardness when compared with treatment by stainless steel and silicon nitride balls. According to the obtained results, the UNSM technique is believed to increase the durability of the carbide component by improving the friction and wear behavior.

Intergranular Corrosion Mechanism of Slightly-sensitized and UNSM-treated 316L Stainless Steel

  • Lee, J.H.;Kim, K.T.;Pyoun, Y.S.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • v.15 no.5
    • /
    • pp.226-236
    • /
    • 2016
  • 316L stainless steels have been widely used in many engineering fields, because of their high corrosion resistance and good mechanical properties. However, welding or aging treatment may induce intergranular corrosion and stress corrosion cracking etc. Since these types of corrosion are closely related to the formation of chromium carbide in grain boundaries, the alloys are controlled by methods such as the lowering of carbon content, solution heat treatment. This work focused on the intergranular corrosion mechanism of slightly-sensitized and Ultrasonic Nano-crystal Surface Modification (UNSM)-treated 316L stainless steel. Samples were sensitized for 1, 5, and 48 hours at $650^{\circ}C$ in $N_2$ gas atmosphere. Subsequently UNSM treatments were carried out on the surface of the samples. The results were discussed on the basis of the sensitization by chromium carbide and carbon segregation, the residual stress and grain refinement. Even though chromium carbide was not precipitated, the intergranular corrosion rate of 316L stainless steel was drastically increased with aging time, and it was confirmed that the increased intergranular corrosion rate of slightly-sensitized (not carbide formed) 316L stainless steel was due to the carbon segregation along the grain boundaries. However, UNSM treatment improved the intergranular corrosion resistance of aged stainless steels, and its improvement was due to the reduction of carbon segregation and the grain refinement of the outer surface, including the introduction of compressive residual stress.

Characteristics in W-EDM of Tungsten Carbide (초경합금의 와이어 방전가공에 의한 특성)

  • 맹민재
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.4
    • /
    • pp.7-13
    • /
    • 2001
  • Wire electrical discharge machining experiments in conducted to investigate characteristics of acoustic emission (AE) and electrical discharge energy due to current peak (I$_{p}$), pulse on time($\tau$/on/). The AE signals are obtained with a sensor attached to workpiece side. Machining states are identified with scanning electron microscopy and residual stress analyzer. It is demonstrated that the residual stress provide reliable informations about the machining states. Moreover, machining states can be detected successfully using both the residual stress and AE count rate.e.

  • PDF

Synthesis of Ultrafine Titanium Carbide Powder by Novel Thermo-Reduction Process (신 열환원 공정에 의한 초미립 티타늄 카바이드 분말 합성)

  • ;S.V. Alexandrovskii
    • Journal of Powder Materials
    • /
    • v.10 no.6
    • /
    • pp.390-394
    • /
    • 2003
  • Ultra fine titanium carbide particles were synthesized by novel metallic thermo-reduction process. The vaporized TiC1$_4$+$CCl_4$ gases were reacted with liquid magnesium and the fine titanium carbide particles were then produced by combining the released titanium and carbon atoms. The vacuum treatment was followed to remove the residual phases of MgC1$_2$ and excess Mg. The stoichiometry, microstructure, fixed and carbon contents and lattice parameter were investigated in titanium carbide powders produced in various reaction parameters.