• Title/Summary/Keyword: residual capacity assessment

검색결과 34건 처리시간 0.02초

Application of Lagrangian approach to generate P-I diagrams for RC columns exposed to extreme dynamic loading

  • Zhang, Chunwei;Abedini, Masoud
    • Advances in concrete construction
    • /
    • 제14권3호
    • /
    • pp.153-167
    • /
    • 2022
  • The interaction between blast load and structures, as well as the interaction among structural members may well affect the structural response and damages. Therefore, it is necessary to analyse more realistic reinforced concrete structures in order to gain an extensive knowledge on the possible structural response under blast load effect. Among all the civilian structures, columns are considered to be the most vulnerable to terrorist threat and hence detailed investigation in the dynamic response of these structures is essential. Therefore, current research examines the effect of blast loads on the reinforced concrete columns via development of Pressure- Impulse (P-I) diagrams. In the finite element analysis, the level of damage on each of the aforementioned RC column will be assessed and the response of the RC columns when subjected to explosive loads will also be identified. Numerical models carried out using LS-DYNA were compared with experimental results. It was shown that the model yields a reliable prediction of damage on all RC columns. Validation study is conducted based on the experimental test to investigate the accuracy of finite element models to represent the behaviour of the models. The blast load application in the current research is determined based on the Lagrangian approach. To develop the designated P-I curves, damage assessment criteria are used based on the residual capacity of column. Intensive investigations are implemented to assess the effect of column dimension, concrete and steel properties and reinforcement ratio on the P-I diagram of RC columns. The produced P-I models can be applied by designers to predict the damage of new columns and to assess existing columns subjected to different blast load conditions.

New Method for Combined Quantitative Assessment of Air-Trapping and Emphysema on Chest Computed Tomography in Chronic Obstructive Pulmonary Disease: Comparison with Parametric Response Mapping

  • Hye Jeon Hwang;Joon Beom Seo;Sang Min Lee;Namkug Kim;Jaeyoun Yi;Jae Seung Lee;Sei Won Lee;Yeon-Mok Oh;Sang-Do Lee
    • Korean Journal of Radiology
    • /
    • 제22권10호
    • /
    • pp.1719-1729
    • /
    • 2021
  • Objective: Emphysema and small-airway disease are the two major components of chronic obstructive pulmonary disease (COPD). We propose a novel method of quantitative computed tomography (CT) emphysema air-trapping composite (EAtC) mapping to assess each COPD component. We analyzed the potential use of this method for assessing lung function in patients with COPD. Materials and Methods: A total of 584 patients with COPD underwent inspiration and expiration CTs. Using pairwise analysis of inspiration and expiration CTs with non-rigid registration, EAtC mapping classified lung parenchyma into three areas: Normal, functional air trapping (fAT), and emphysema (Emph). We defined fAT as the area with a density change of less than 60 Hounsfield units (HU) between inspiration and expiration CTs among areas with a density less than -856 HU on inspiration CT. The volume fraction of each area was compared with clinical parameters and pulmonary function tests (PFTs). The results were compared with those of parametric response mapping (PRM) analysis. Results: The relative volumes of the EAtC classes differed according to the Global Initiative for Chronic Obstructive Lung Disease stages (p < 0.001). Each class showed moderate correlations with forced expiratory volume in 1 second (FEV1) and FEV1/forced vital capacity (FVC) (r = -0.659-0.674, p < 0.001). Both fAT and Emph were significant predictors of FEV1 and FEV1/FVC (R2 = 0.352 and 0.488, respectively; p < 0.001). fAT was a significant predictor of mean forced expiratory flow between 25% and 75% and residual volume/total vital capacity (R2 = 0.264 and 0.233, respectively; p < 0.001), while Emph and age were significant predictors of carbon monoxide diffusing capacity (R2 = 0.303; p < 0.001). fAT showed better correlations with PFTs than with small-airway disease on PRM. Conclusion: The proposed quantitative CT EAtC mapping provides comprehensive lung functional information on each disease component of COPD, which may serve as an imaging biomarker of lung function.

Desorption Characteristics and Bioavailability of Zn to Earthworm in Mine Tailings (광미내 Zn의 탈착 특성과 지렁이에 대한 생이용성)

  • Oh, Sang-Hwa;Shin, Won-Sik
    • Journal of Soil and Groundwater Environment
    • /
    • 제16권4호
    • /
    • pp.38-52
    • /
    • 2011
  • Sorption and sequential desorption experiments were conducted for Zn using a natural soil (NS) in background status by aging (1, 30 and 100 days). The sorption isotherm showed that Zn had high sorption capacity but low sorption affinity in NS. Sequential desorption was biphasic with appreciable amount of sorbed Zn residing in the desorption-resistant fraction after several desorption steps. The biphasic desorption behavior of Zn was characterized by a biphasic desorption model that includes a linear term to represent labile or easily-desorbing fraction and a Langmuirian-type term to represent desorption-resistant fraction. The biphasic desorption model indicated that the size of the maximum capacity of desorption-resistant fraction ($q^{irr}_{max}$) increased with aging in NS. Desorption kinetics and desorption-resistance of Zn in the soils collected from mine tailings (MA, MB and MC collected from surface, subsurface soils and mine waste, respectively) were investigated and compared to the bioavailability to earthworm (Eisenia fetida). Desorption kinetic data of Zn were fitted to several desorption kinetic models. The ratio ($q_{e,d}/q_0$) of remaining Zn at desorption equilibrium ($q_{e,d}$) to initial sorbed concentration ($q_0$) was in the range of 0.53~0.90 in the mine tailings which was higher than that in NS, except MA. The sequential desorption from the mine tailings with 0.01M Na$NO_3$ and 0.01M $CaCl_2$ showed that appreciable amounts of Zn are resistant to desorption due to aging or sequestration. The SM&T (Standard Measurements and Testing Programme of European Union) analysis showed that the sum of oxidizable (Step III) and residual (Step IV) fractions of Zn was linearly related with its desorption-resistance ($q^{irr}_{max}$) determined by the sequential desorption with 0.01M Na$NO_3$ ($R^2$= 0.9998) and 0.01M $CaCl_2$ ($R^2$= 0.8580). The earthworm uptake of Zn and the desorbed amount of Zn ($q_{desorbed}$ = $q_0-q_{e,d}$) in MB soil were also linearly related ($R^2$ = 0.899). Our results implicate that the ecological risk assessment of heavy metals would be possible considering the relation between desorption behaviors and bioavailability to earthworm.

M-mode Ultrasound Assessment of Diaphragmatic Excursions in Chronic Obstructive Pulmonary Disease : Relation to Pulmonary Function Test and Mouth Pressure (만성폐쇄성 폐질환 환자에서 M-mode 초음파로 측정한 횡격막 운동)

  • Lim, Sung-Chul;Jang, Il-Gweon;Park, Hyeong-Kwan;Hwang, Jun-Hwa;Kang, Yu-Ho;Kim, Young-Chul;Park, Kyung-Ok
    • Tuberculosis and Respiratory Diseases
    • /
    • 제45권4호
    • /
    • pp.736-745
    • /
    • 1998
  • Background: Respiratory muscle interaction is further profoundly affected by a number of pathologic conditions. Hyperinflation may be particularly severe in chronic obstructive pulmonary disease(COPD) patients, in whom the functional residual capacity(FRC) often exceeds predicted total lung capacity(TLC). Hyperinflation reduces the diaphragmatic effectiveness as a pressure generator and reduces diaphragmatic contribution to chest wall motion. Ultrasonography has recently been shown to be a sensitive and reproducible method of assessing diaphragmatic excursion. This study was performed to evaluate how differences of diaphragmatic excursion measured by ultrasonography associate with normal subjects and COPD patients. Methods: We measured diaphragmatic excursions with ultrasonography on 28 healthy subjects(l6 medical students, 12 age-matched control) and 17 COPD patients. Ultrasonographic measurements were performed during tidal breathing and maximal respiratory efforts approximating vital capacity breathing using Aloka KEC-620 with 3.5 MHz transducer. Measurements were taken in the supine posture. The ultrasonographic probe was positioned transversely in the midclavicular line below the right subcostal margin. After detecting the right hemidiaphragm in the B-mode the ultrasound beam was then positioned so that it was approximately parallel to the movement of middle or posterior third of right diaphragm. Recordings in the M-mode at this position were made throughout the test. Measurements of diaphragmatic excursion on M-mode tracing were calculated by the average gap in 3 times-respiration cycle. Pulmonary function test(SensorMedics 2800), maximal inspiratory(PImax) and expiratory mouth pressure(PEmax, Vitalopower KH-101, Chest) were measured in the seated posture. Results: During the tidal breathing, diaphragmatic excursions were recorded $1.5{\pm}0.5cm$, $1.7{\pm}0.5cm$ and $1.5{\pm}0.6cm$ in medical students, age-matched control group and COPD patients, respectively. Diaphragm excursions during maximal respiratory efforts were significantly decreased in COPD patients ($3.7{\pm}1.3cm$) when compared with medical students, age-matched control group($6.7{\pm}1.3cm$, $5.8{\pm}1.2cm$, p< 0.05}. During maximal respiratory efforts in control subjects, diaphragm excursions were correlated with $FEV_1$, FEVl/FVC, PEF, PIF, and height. In COPD patients, diaphragm excursions during maximal respiratory efforts were correlated with PEmax(maximal expiratory pressure), age, and %FVC. In multiple regression analysis, the combination of PEmax and age was an independent marker of diaphragm excursions during maximal respiratory efforts with COPD patients. Conclusion: COPD subjects had smaller diaphragmatic excursions during maximal respiratory efforts than control subjects. During maximal respiratory efforts in COPD patients, diaphragm excursions were well correlated with PEmax. These results suggest that diaphragm excursions during maximal respiratory efforts with COPD patients may be valuable at predicting the pulmonary function.

  • PDF