• Title/Summary/Keyword: residual capacity assessment

Search Result 34, Processing Time 0.017 seconds

Residual static strength of cracked concrete-filled circular steel tubular (CFCST) T-joint

  • Cui, M.J.;Shao, Y.B.
    • Steel and Composite Structures
    • /
    • v.18 no.4
    • /
    • pp.1045-1062
    • /
    • 2015
  • Concrete-filled circular t steel tubular joints (CFSTJs) in practice are frequently subjected to fluctuated loadings caused by wind, earthquake and so on. As fatigue crack is sensitive to such cyclic loadings, assessment on performance of CFSTJs with crack-like defect attracts more concerns because both high stress concentration at the brace/chord intersection and welding residual stresses along weld toe cause the materials in the region around the intersection to be more brittle. Once crack initiates and propagates along the weld toe, tri-axial stresses in high gradient around the crack front exist, which may bring brittle fracture failure. Additionally, the stiffness and the load carrying capacity of the CFSTJs with crack may decrease due to the weakened connection at the intersection. To study the behaviour of CFSTJs with initial crack, experimental tests have been carried out on three full-scale CFCST T-joints with same configuration. The three specimens include one uncracked joint and two corresponding cracked joints. Load-displacement and load-deformation curves, failure mode and crack propagation are obtained from the experiment measurement. According to the experimental results, it can be found that he load carrying capacity of the cracked joints is decreased by more than 10% compared with the uncracked joint. The effect of crack depth on the load carrying capacity of CFCST T-joints seems to be slight. The failure mode of the cracked CFCST T-joints represents as plastic yielding rather than brittle fracture through experimental observation.

Load bearing capacity reduction of concrete structures due to reinforcement corrosion

  • Chen, Hua-Peng;Nepal, Jaya
    • Structural Engineering and Mechanics
    • /
    • v.75 no.4
    • /
    • pp.455-464
    • /
    • 2020
  • Reinforcement corrosion is one of the major problems in the durability of reinforced concrete structures exposed to aggressive environments. Deterioration caused by reinforcement corrosion reduces the durability and the safety margin of concrete structures, causing excessive costs in managing these structures safely. This paper aims to investigate the effects of reinforcement corrosion on the load bearing capacity deterioration of the corroded reinforced concrete structures. A new analytical method is proposed to predict the crack growth of cover concrete and evaluate the residual strength of concrete structures with corroded reinforcement failing in bond. The structural performance indicators, such as concrete crack growth and flexural strength deterioration rate, are assumed to be a stochastic process for lifetime distribution modelling of structural performance deterioration over time during the life cycle. The Weibull life evolution model is employed for analysing lifetime reliability and estimating remaining useful life of the corroded concrete structures. The results for the worked example show that the proposed approach can provide a reliable method for lifetime performance assessment of the corroded reinforced concrete structures.

Post-earthquake capacity evaluation of R/C buildings based on pseudo-dynamic tests

  • Kang, Dae-Eon;Yi, Waon-Ho
    • Structural Engineering and Mechanics
    • /
    • v.24 no.1
    • /
    • pp.91-105
    • /
    • 2006
  • In this paper, post-earthquake capacity evaluation method of reinforced concrete buildings was studied. Substructure pseudo-dynamic test and static loading test of first story column in a four-story R/C building was carried out in order to investigate the validity of the evaluation method proposed in the Damage Assessment Guideline (JBDPA 2001). In pseudo-dynamic test, different levels of damage were induced in the specimens by pre-loading, and input levels of seismic motion, at which the specimens reached to the ultimate stage, were examined. From the experimental result, no significant difference in damage levels such as residual crack width between the specimens under static and pseudo-dynamic loading was found. It is shown that the seismic capacity reduction factors ${\eta}$ can provide a reasonable estimation of post-earthquake seismic capacity of R/C buildings suffered earthquakes.

Nonlocal Formulation for Numerical Analysis of Post-Blast Behavior of RC Columns

  • Li, Zhong-Xian;Zhong, Bo;Shi, Yanchao;Yan, Jia-Bao
    • International Journal of Concrete Structures and Materials
    • /
    • v.11 no.2
    • /
    • pp.403-413
    • /
    • 2017
  • Residual axial capacity from numerical analysis was widely used as a critical indicator for damage assessment of reinforced concrete (RC) columns subjected to blast loads. However, the convergence of the numerical result was generally based on the displacement response, which might not necessarily generate the correct post-blast results in case that the strain softening behavior of concrete was considered. In this paper, two widely used concrete models are adopted for post-blast analysis of a RC column under blast loading, while the calculated results show a pathological mesh size dependence even though the displacement response is converged. As a consequence, a nonlocal integral formulation is implemented in a concrete damage model to ensure mesh size independent objectivity of the local and global responses. Two numerical examples, one to a RC column with strain softening response and the other one to a RC column with post-blast response, are conducted by the nonlocal damage model, and the results indicate that both the two cases obtain objective response in the post-peak stage.

Explosive loading of multi storey RC buildings: Dynamic response and progressive collapse

  • Weerheijm, J.;Mediavilla, J.;van Doormaal, J.C.A.M.
    • Structural Engineering and Mechanics
    • /
    • v.32 no.2
    • /
    • pp.193-212
    • /
    • 2009
  • The resilience of a city confronted with a terrorist bomb attack is the background of the paper. The resilience strongly depends on vital infrastructure and the physical protection of people. The protection buildings provide in case of an external explosion is one of the important elements in safety assessment. Besides the aspect of protection, buildings facilitate and enable many functions, e.g., offices, data storage, -handling and -transfer, energy supply, banks, shopping malls etc. When a building is damaged, the loss of functions is directly related to the location, amount of damage and the damage level. At TNO Defence, Security and Safety methods are developed to quantify the resilience of city infrastructure systems (Weerheijm et al. 2007b). In this framework, the dynamic response, damage levels and residual bearing capacity of multi-storey RC buildings is studied. The current paper addresses the aspects of dynamic response and progressive collapse, as well as the proposed method to relate the structural damage to a volume-damage parameter, which can be linked to the loss of functionality. After a general introduction to the research programme and progressive collapse, the study of the dynamic response and damage due to blast loading for a single RC element is described. Shock tube experiments on plates are used as a reference to study the possibilities of engineering methods and an explicit finite element code to quantify the response and residual bearing capacity. Next the dynamic response and progressive collapse of a multi storey RC building is studied numerically, using a number of models. Conclusions are drawn on the ability to predict initial blast damage and progressive collapse. Finally the link between the structural damage of a building and its loss of functionality is described, which is essential input for the envisaged method to quantify the resilience of city infrastructure.

Failure Modeling of Bridge Components Subjected to Blast Loading Part II: Estimation of the Capacity and Critical Charge

  • Quintero, Russ;Wei, Jun;Galati, Nestore;Nanni, Antonio
    • International Journal of Concrete Structures and Materials
    • /
    • v.1 no.1
    • /
    • pp.29-36
    • /
    • 2007
  • The purpose of this paper is the assessment of the capacity of the reinforced concrete (RC) elements of an arch bridge when they are subjected to contact and near-contact explosive charges of various amounts, and the estimation of the critical charges for these components. The bridge considered is the Tenza Viaduct, a decommissioned structure south of Naples, Italy. Its primary elements, deck, piers and arches were analyzed. The evaluation was accomplished via numerical analyses that made possible to obtain the elements dynamic response when they are exposed to blast loading conditions. To evaluate the member's capacities, failure criteria for deck, piers and arches were proposed based on concrete damage parameters. Additionally, curves relating the explosive charge to the residual capacity and to damage level of the elements were also developed. The results of this work were taken into account to investigate the progressive collapse of the global structure.

Seismic performance analysis of steel-brace RC frame using topology optimization

  • Qiao, Shengfang;Liang, Huqing;Tang, Mengxiong;Wang, Wanying;Hu, Hesong
    • Structural Engineering and Mechanics
    • /
    • v.71 no.4
    • /
    • pp.417-432
    • /
    • 2019
  • Seismic performance analysis of steel-brace reinforced concrete (RC) frame using topology optimization in highly seismic region was discussed in this research. Topology optimization based on truss-like material model was used, which was to minimum volume in full-stress method. Optimized bracing systems of low-rise, mid-rise and high-rise RC frames were established, and optimized bracing systems of substructure were also gained under different constraint conditions. Thereafter, different structure models based on optimized bracing systems were proposed and applied. Last, structural strength, structural stiffness, structural ductility, collapse resistant capacity, collapse probability and demolition probability were studied. Moreover, the brace buckling was discussed. The results show that bracing system of RC frame could be derived using topology optimization, and bracing system based on truss-like model could help to resolve numerical instabilities. Bracing system of topology optimization was more effective to enhance structural stiffness and strength, especially in mid-rise and high-rise frames. Moreover, bracing system of topology optimization contributes to increase collapse resistant capacity, as well as reduces collapse probability and accumulated demolition probability. However, brace buckling might weaken beneficial effects.

Earthquake loss assessment framework of ductile RC frame using component- performance -based methodology

  • Shengfang Qiao;Xiaolei Han;Hesong Hu;Mengxiong Tang
    • Structural Engineering and Mechanics
    • /
    • v.91 no.4
    • /
    • pp.369-382
    • /
    • 2024
  • The earthquake loss assessment framework of ductile reinforced concrete (or RC) frame using component-performance -based methodology was studied in this paper. The elasto-plastic rotation angle was used as the damage indicator of structural component, and the damage-to-loss model was proposed on the basis of the deformation indicator of structural component. Dynamic instability during incremental dynamic analysis was taken as collapse criterion, and column failure was taken as criterion that structure has to be demolished. Expected earthquake losses of low-rise, mid-rise and high-rise RC frames were discussed. The expected earthquake loss encompassed collapse loss, demolition loss and repair loss. Furthermore, component groups of RC frame were divided into structural components, nonstructural components and rugged components. The results indicate that ductile RC frame is more likely to be demolished than collapse, especially in low-rise and mid-rise RC frames. Furthermore, the less collapse margin ratio the structure has, the more demolition probability the structure will suffer under rare earthquake. The demolition share of total earthquake loss might be more prominent than repair share and collapse share in ductile RC frame.

Assessment of Variable Characteristics in Water Quality of the Supply Systems in the Building (건축물내 급수설비의 수질변화 특성과 영향력 평가)

  • Lee, H.D.;Hwang, J.W.;Bae, C.H.;Kim, S.J.
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.4
    • /
    • pp.313-320
    • /
    • 2004
  • In this study, variable characteristics of drinking water and the influences on underground water reservoirs, rooftop water tanks, and service water pipes in the building were assessed. The influence of underground water reservoir material and water capacity on water quality also were assessed. The results are the following as; First of all, the drinking water passing through underground water reservoirs or service water pipes in the building, averagely metal component concentration more increased from percent of 41.3 to percent of 74.2 totally than other items of water quality. On the other hand, both residual chlorine and total solid highly decreased 65.6 percent and 35.3 percent, respectively. Therefore, it was thought that water quality could be getting worse for microorganism re-growth by residual chlorine reduction, and total solid also could be a cause for extraneous matters accumulated in water reservoir. Secondly, the variations on water quality of each stage for water supply system in the building were higher in water service pipes connected from rooftop water tanks to the tap than in underground water reservoirs. In addition to, among of twelve items on water quality, ten items on water quality except dissolved oxygen and residual chlorine increased. Therefore, it was thought that the influence of water service pipes connected from rooftop water tanks to the tap on water quality were higher than other stages of water supply system in the building. Thirdly, in case of materials of underground water reservoir, it was likely that the variation on water quality by stainless steel and concrete materials got some similar. In case of water capacity, the variations on water quality of underground water reservoirs over $1,000m^3$ higher than those under $1,000m^3$. That reasons was likely that the retention time(49.72 hours averagely) of underground water reservoirs over $1,000m^3$ was two times longer than it of those under $1,000m^3$(23.37 hours). Therefore, it was thought that the influence on water quality by materials were some similar, but in case of water capacity, the influence of underground water reservoirs were higher.

Practical Predictive Formulas for Residual Strengths of Fire-Damaged Normal Strength Reinforced Concrete Square Columns (화해를 입은 보통강도 철근콘크리트 정방형 기둥의 실용 잔존내력식)

  • Lee, Cha-Don;Lee, Seung-Whan;Lee, Chang-Eun
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.1 s.91
    • /
    • pp.3-12
    • /
    • 2006
  • The behavior of concrete structures subject to fire is complex, depending on many factors. The factors usually considered in research include the level and endurance of temperatures in concrete and reinforcing bars, the mechanical properties of the steel and concrete, moisture contents, cover thickness, existence of eccentricity, and member geometry among others. Although there are a few sophisticated numerical models which can trace the effects of these important parameters on the residual capacity of reinforced concrete columns damaged by fire, practical predictive formulas are in need for rapid yet reasonable assessment in practice. The practical formulas are developed in this study for fire-damaged normal strength reinforced concrete square columns, which can approximate the predictions of those sophisticated numerical models with ease in use. The formulas take into account the effects of exposure time to fire, concrete strength, reinforcement ratio and sectional area. The developed formulas are seen to correlate with the predictions of numerical model in a reasonable agreement. Some examples are also presented in determining the residual strength, safety and additionally needed strengths for a fire-damaged reinforced concrete column.