• 제목/요약/키워드: residual capacity assessment

검색결과 34건 처리시간 0.795초

신뢰성에 기초한 강상형 곡선램프교의 안전도 및 잔존내하력 평가 (Reliability-Based Assessment of Safety and Residual Load Carrying-Capacity of Curved Steel-Box Ramp Bridges)

  • 조효남;최영민;민대홍
    • 한국강구조학회 논문집
    • /
    • 제9권1호통권30호
    • /
    • pp.51-63
    • /
    • 1997
  • Highly curved steel-box bridges are usually constructed as ramp structures for the highway interchange and metropolitan elevated highway junction, but a number of these bridges are deteriorated and damaged to a significant degree due to heavy traffic. The main objective of the study is to develop a practical reliability-based assessment of safety and residual load carrying-capacity of existing curved steel-box ramp bridges. In the paper, for the realistic assessment of safety and residual load carrying-capacity of deteriorated and/or damaged curved steel-box bridges, an interactive non-linear limit state model is formulated based on the von Mises's combined stress yield criterion. It is demonstrated that the proposed model is effective for the assessment of reliability-based safety and the evaluation of residual load carrying-capacity of curved steel-box bridges. In addition, this study comparatively shows the applicability of various reliability analysis methods, and suggests a practical and effective one to be used in practice.

  • PDF

지진피해를 받은 철근콘크리트 건물의 지진피해도 판정 (Post-Earthquake Damage Evaluation for R/C Buildings Based on Residual Seismic Capacity)

  • 이강석;강대언
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 추계 학술발표회 제17권2호
    • /
    • pp.109-112
    • /
    • 2005
  • In this paper described is the basic concept of the Guideline for Post-earthquake Damage Assessment of RC buildings, revised in 2001, in Japan. This paper discusses the damage rating procedures based on the residual seismic capacity index R, the ratio of residual seismic capacity to the original capacity, that is consistent with the Japanese Standard for Seismic Evaluation of Existing RC Buildings, and their validity through calibration with observed damage due to the 1995 Hyogoken-Nambu (Kobe) earthquake. Good agreement between the residual seismic capacity ratio and damage levels was observed.

  • PDF

Post-earthquake assessment of buildings using displacement and acceleration response

  • Hsu, Ting-Yu;Pham, Quang-Vinh
    • Earthquakes and Structures
    • /
    • 제17권6호
    • /
    • pp.599-609
    • /
    • 2019
  • After an earthquake, a quick seismic assessment of a structure can facilitate the recovery of operations, and consequently, improve structural resilience. Especially for facilities that play a key role in rescue or refuge efforts (e.g., hospitals and power facilities), or even economically important facilities (e.g., high-tech factories and financial centers), immediately resuming operations after disruptions resulting from an earthquake is critical. Therefore, this study proposes a prompt post-earthquake seismic evaluation method that uses displacement and acceleration measurements taken from real structural responses that resulted during an earthquake. With a prepared pre-earthquake capacity curve of a structure, the residual seismic capacity can be estimated using the residual roof drift ratio and stiffness. The proposed method was verified using a 6-story steel frame structure on a shaking table. The structure was damaged during a moderate earthquake, after which it collapsed completely during a severe earthquake. According to the experimental results, a reasonable estimation of the residual seismic capacity of structures can be performed using the proposed post-earthquake seismic evaluation method.

신뢰성에 기초한 강상형 보도육교의 안전도 및 잔존 내하력평가 (Reliability-Based Assessment of Safety and Residual Carrying-Capacity of Steel-Box Pedestrian Bridges)

  • 조효남;최영민;이은철
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1996년도 봄 학술발표회 논문집
    • /
    • pp.202-211
    • /
    • 1996
  • A number of typical type of steel-box pedestrian bridges are constructed in the metropolitan highway or heavy traffic urban area. Although it has the advantage of speedy construction because of its simple structural form and prefabricated erection method, it has been reported that many of these bridges are deteriorated or damaged and thus are in the state such that it would give unsafe and uncomfortable feeling to pedestrians. In the paper, for the realistic assessment of safety and residual earring-capacity of deteriorated and/or damaged steel box pedestrian bridges, an interactive non-linear limit state model are formulated based on the von Mises' combined stress yield criterion. It is demonstrated that the proposal model is effective for the reliability-based safety assessment and residual carrying-capacity evaluation of steel-box pedestrian bridges. In addition, this study suggests an effective and practical field load test method for pedestrian bridges.

  • PDF

Pressure impulse diagrams for simply-supported steel columns based on residual load-carrying capacities

  • Park, Jong Yil;Krauthammer, Theodor
    • Structural Engineering and Mechanics
    • /
    • 제39권2호
    • /
    • pp.287-301
    • /
    • 2011
  • This paper is focused on the residual capacity of steel columns, as a damage criterion. Load-Impulse (P-I) diagrams are frequently used for analysis, design, or assessment of blast resistant structures. The residual load carrying capacity of a simply supported steel column was derived as a damage criterion based on a SDOF computational approach. Dimensionless P-I diagrams were generated numerically with this quantitative damage criterion. These numerical P-I diagrams were used to show that traditional constant ductility ratios adopted as damage criteria are not appropriate for either the design or damage assessment of blast resistant steel columns, and that the current approach could be a much more appropriate alternative.

Residual capacity assessment of post-damaged RC columns exposed to high strain rate loading

  • Abedini, Masoud;Zhang, Chunwei
    • Steel and Composite Structures
    • /
    • 제45권3호
    • /
    • pp.389-408
    • /
    • 2022
  • Residual capacity is defined as the load carrying capacity of an RC column after undergoing severe damage. Evaluation of residual capacity of RC columns is necessary to avoid damage initiation in RC structures. The central aspect of the current research is to propose an empirical formula to estimate the residual capacity of RC columns after undergoing severe damage. This formula facilitates decision making of whether a replacement or a repair of the damaged column is adequate for further use. Available literature mainly focused on the simulation of explosion loads by using simplified pressure time histories to develop residual capacity of RC columns and rarely simulated the actual explosive. Therefore, there is a gap in the literature concerning general relation between blast damage of columns with different explosive loading conditions for a reliable and quick evaluation of column behavior subjected to blast loading. In this paper, the Arbitrary Lagrangian Eulerian (ALE) technique is implemented to simulate high fidelity blast pressure propagations. LS-DYNA software is utilized to solve the finite element (FE) model. The FE model is validated against the practical blast tests, and outcomes are in good agreement with test results. Multivariate linear regression (MLR) method is utilized to derive an analytical formula. The analytical formula predicts the residual capacity of RC columns as functions of structural element parameters. Based on intensive numerical simulation data, it is found that column depth, longitudinal reinforcement ratio, concrete strength and column width have significant effects on the residual axial load carrying capacity of reinforced concrete column under blast loads. Increasing column depth and longitudinal reinforcement ratio that provides better confinement to concrete are very effective in the residual capacity of RC column subjected to blast loads. Data obtained with this study can broaden the knowledge of structural response to blast and improve FE models to simulate the blast performance of concrete structures.

Residual capacity assessment of in-service concrete box-girder bridges considering traffic growth and structural deterioration

  • Yuanyuan Liu;Junyong Zhou;Jianxu Su;Junping Zhang
    • Structural Engineering and Mechanics
    • /
    • 제85권4호
    • /
    • pp.531-543
    • /
    • 2023
  • The existing concrete bridges are time-varying working systems, where the maintenance strategy should be planned according to the time-varying performance of the bridge. This work proposes a time-dependent residual capacity assessment procedure, which considers the non-stationary bridge load effects under growing traffic and non-stationary structural deterioration owing to material degradations. Lifetime bridge load effects under traffic growth are predicated by the non-stationary peaks-over-threshold (POT) method using time-dependent generalized Pareto distribution (GPD) models. The non-stationary structural resistance owing to material degradation is modeled by incorporating the Gamma deterioration process and field inspection data. A three-span continuous box-girder bridge is illustrated as an example to demonstrate the application of the proposed procedure, and the time-varying reliability indexes of the bridge girder are calculated. The accuracy of the proposed non-stationary POT method is verified through numerical examples, where the shape parameter of the time-varying GPD model is constant but the threshold and scale parameters are polynomial functions increasing with time. The case study illustrates that the residual flexural capacities show a degradation trend from a slow decrease to an accelerated decrease under traffic growth and material degradation. The reliability index for the mid-span cross-section reduces from 4.91 to 4.55 after being in service for 100 years, and the value is from 4.96 to 4.75 for the mid-support cross-section. The studied bridge shows no safety risk under traffic growth and structural deterioration owing to its high design safety reserve. However, applying the proposed numerical approach to analyze the degradation of residual bearing capacity for bridge structures with low safety reserves is of great significance for management and maintenance.

잔류균열폭 및 손상도에 기초한 무보강 조적벽체를 갖는 RC 골조의 잔존내진성능 평가 (Residual Seismic Capacity Evaluation of RC Frames with URM Infill Wall Based on Residual Crack Width and Damage Class)

  • 최호
    • 한국지진공학회논문집
    • /
    • 제13권5호
    • /
    • pp.41-50
    • /
    • 2009
  • 지진피해를 입은 건물의 주된 관심사는 건물에 남아 있는 내진성능 및 여진에 대한 안전성을 판단하는데 있다. 따라서 지진피해를 입은 지역 사회의 조속한 복귀를 위해서는 건물의 잔존내진성능 평가방법을 확립해 두는 것이 필수적이다. 본 연구에서는 무보강 조적채움벽체를 갖는 RC 건물의 잔존내진성능 평가방법 개발을 주목적으로, 전형적인 학교건물을 대상으로 축력레벨을 변수로 한 실스케일, 단층 1스팬 실험체를 제작하여 정적 반복가력실험을 실시하였다. 실험 중 잔존내진성능을 판정하는데 유용한 정보 중 하나인 잔류균열폭을 상세히 측정하였다. 본 논문에서는 잔류균열폭과 잔존내진성능과의 관계에 대해서 실험적, 해석적으로 검토하고 잔존내 진성능 평가를 위한 각 손상도 레벨에 대응하는 내진성능 저감계수를 제안한다.

부직포 통수능을 고려한 배수형 전력구터널의 라이닝 하중산정 (Assessment of lining load for drainage type cable tunnel considered water-passing capacity of tunnel filter material)

  • 김대홍;김경열;이대수
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.1369-1376
    • /
    • 2005
  • In case of the drainage type tunnel, the residual water pressure is likely to act on the tunnel lining due to the decrease of water-passing capacity of the filter material. Therefore, this study discussions a method to predict the lining load with the consideration of water passing capacity of the filter material through the literature review and numerical analysis. It is expected from the results of case studies that the design load acting on the concrete lining in the drainage type tunnel could be assumed to be about 50% of the hydrostatic water pressure in steady-state ground-water condition.

  • PDF

Seismic fragility assessment of self-centering RC frame structures considering maximum and residual deformations

  • Li, Lu-Xi;Li, Hong-Nan;Li, Chao
    • Structural Engineering and Mechanics
    • /
    • 제68권6호
    • /
    • pp.677-689
    • /
    • 2018
  • Residual deformation is a crucial index that should be paid special attention in the performance-based seismic analyses of reinforced concrete (RC) structures. Owing to their superior re-centering capacity under earthquake excitations, the post-tensioned self-centering (PTSC) RC frames have been proposed and developed for engineering application during the past few decades. This paper presents a comprehensive assessment on the seismic fragility of a PTSC frame by simultaneously considering maximum and residual deformations. Bivariate limit states are defined according to the pushover analyses for maximum deformations and empirical judgments for residual deformations. Incremental Dynamic Analyses (IDA) are conducted to derive the probability of exceeding predefined limit states at specific ground motion intensities. Seismic performance of the PTSC frame is compared with that of a conventional monolithic RC frame. The results show that, taking a synthetical consideration of maximum and residual deformations, the PTSC frame surpasses the monolithic frame in resisting most damage states, but is more vulnerable to ground motions with large intensities.