• Title/Summary/Keyword: residual Si

Search Result 438, Processing Time 0.028 seconds

The Study on Fabrication of LAS System Ceramics for Thermal Shock Resistance from Silicate Minerals (III) Sintering Characteristics of Eucryptite and Spodumene (실리케이트 광물을 이용한 내열충격성 LAS계 세라믹스의 제조에 관한 연구 (III) Eucryptite와 Spondumene 소결특성)

  • 박한수;조경식;문종수
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.2
    • /
    • pp.171-182
    • /
    • 1995
  • Five eucryptite and ten spodumene compositional powders were syntehsized from three sillimanite group, two kaolin group, and five pyrophyllite group silicate minerals. Those powders were isotatically pressed and fired at 1200~135$0^{\circ}C$ for 2 hrs, and then the sintered bodies were characterized. Silicate minerals with molar ratio of Al2O3 to SiO2 correspond to those of eucryptite and spodumene are kaolin and pyrophyllite group silicate minerals, respectively. Sintering characteristics of eucryptite from kaolin group and spodumene from pyrophyllite group mineral were superior to those from other silicate minerals. Eucryptite sintered bodies with 95~97% relative densities and densified microstructures can be obtained using Hadong pink kaolin as starting materials by sintering over broad temperature zone(1250~135$0^{\circ}C$). The eucryptite sintered bodies which were fired at 130$0^{\circ}C$ for 2hrs, from Hadong pink kaolin had within 3.0wt% microstructural compositional variations compaired with stoichiometric compound, and had good negative thermal expansiion property with -3.55$\times$10-6/$^{\circ}C$ thermal expansion coefficient. Spodumene sintered bodies which were prepared from pyrophyllite group silicate minerals, had dense microstructures and high densities by densification through liquid phase sintering with enlarged temperature range. The specimens which were fired at 130$0^{\circ}C$ for 2 hrs from Gusipyrophillite, had dense microstructure with crystallines mainly, and low thermal expansion property with 0.62$\times$10-6/$^{\circ}C$ thermal expansion coefficient. The porous texture and residual glass phase in LAS system ceramics which were prepared from silicate minerals, tend to increase the thermal expansion properties of sintered bodies to positive direction.

  • PDF

A Study on Nano/micro Pattern Fabrication of Metals by Using Mechanical Machining and Selective Deposition Technique (기계적 가공과 무전해 선택적 증착기술을 이용한 나노/마이크로 금속패턴 제작에 관한 연구)

  • Cho S.H.;Youn S.W.;Kang C.G.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1507-1510
    • /
    • 2005
  • This study was carried out as a part of the research on the development of a maskless and electroless process for fabricating metal micro/nanostructures by using a nanoindenter and an electroless deposition technique. $2-\mu{m}-deep$ indentation tests on Ni and Cu samples were performed. The elastic recovery of the Ni and Cu was 9.30% and 9.53% of the maximum penetration depth, respectively. The hardness and the elastic modulus were 1.56 GPa and 120 GPa for Ni and 1.49 GPa and 100 GPa for Cu. The effect of single-point diamond machining conditions such as the Berkovich tip orientation (0, 45, and $90^{\circ}$) and the normal load (0.1, 0.3, 0.5, 1, 3, and 5 mN), on both the deformation behavior and the morphology of cutting traces (such as width and depth) was investigated by constant-load scratch tests. The tip orientation had a significant influence on the coefficient of friction, which varied from 0.52-0.66 for Ni and from 0.46-0.61 for Cu. The crisscross-pattern sample showed that the tip orientation strongly affects the surface quality of the machined area during scratching. A selective deposition of Cu at the pit-like defect on a p-type Si(111) surface was also investigated. Preferential deposition of the Cu occurred at the surface defect sites of silicon wafers, indicating that those defect sites act as active sites for the deposition reaction. The shape of the Cu-deposited area was almost the same as that of the residual stress field.

  • PDF

A Study on Pitch Extraction Method using FIR-STREAK Digital Filter (FIR-STREAK 디지털 필터를 사용한 피치추출 방법에 관한 연구)

  • Lee, Si-U
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.1
    • /
    • pp.247-252
    • /
    • 1999
  • In order to realize a speech coding at low bit rates, a pitch information is useful parameter. In case of extracting an average pitch information form continuous speech, the several pitch errors appear in a frame which consonant and vowel are coexistent; in the boundary between adjoining frames and beginning or ending of a sentence. In this paper, I propose an Individual Pitch (IP) extraction method using residual signals of the FIR-STREAK digital filter in order to restrict the pitch extraction errors. This method is based on not averaging pitch intervals in order to accomodate the changes in each pitch interval. As a result, in case of Ip extraction method suing FIR-STREAK digital filter, I can't find the pitch errors in a frame which consonant and vowel are consistent; in the boundary between adjoining frames and beginning or ending of a sentence. This method has the capability of being applied to many fields, such as speech coding, speech analysis, speech synthesis and speech recognition.

  • PDF

Effect of Autoclave Curing on the Microstructure of Blended Cement Mixture Incorporating Ground Dune Sand and Ground Granulated Blast Furnace Slag

  • Alawad, Omer Abdalla;Alhozaimy, Abdulrahman;Jaafar, Mohd Saleh;Aziz, Farah Nora Abdul;Al-Negheimish, Abdulaziz
    • International Journal of Concrete Structures and Materials
    • /
    • v.9 no.3
    • /
    • pp.381-390
    • /
    • 2015
  • Investigating the microstructure of hardened cement mixtures with the aid of advanced technology will help the concrete industry to develop appropriate binders for durable building materials. In this paper, morphological, mineralogical and thermogravimetric analyses of autoclave-cured mixtures incorporating ground dune sand and ground granulated blast furnace slag as partial cementing materials were investigated. The microstructure analyses of hydrated products were conducted using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), differential thermal analysis (DTA), thermo-graphic analysis (TGA) and X-ray diffraction (XRD). The SEM and EDX results demonstrated the formation of thin plate-like calcium silicate hydrate plates and a compacted microstructure. The DTA and TGA analyses revealed that the calcium hydroxide generated from the hydration binder materials was consumed during the secondary pozzolanic reaction. Residual crystalline silica was observed from the XRD analysis of all of the blended mixtures, indicating the presence of excess silica. A good correlation was observed between the compressive strength of the blended mixtures and the CaO/$SiO_2$ ratio of the binder materials.

Interfacial Reactions of Sn-Ag-Cu solder on Ni-xCu alloy UBMs (Ni-xCu 합금 UBM과 Sn-Ag계 솔더 간의 계면 반응 연구)

  • Han Hun;Yu Jin;Lee Taek Yeong
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2003.11a
    • /
    • pp.84-87
    • /
    • 2003
  • Since Pb-free solder alloys have been used extensively in microelectronic packaging industry, the interaction between UBM (Under Bump Metallurgy) and solder is a critical issue because IMC (Intermetallic Compound) at the interface is critical for the adhesion of mechanical and the electrical contact for flip chip bonding. IMC growth must be fast during the reflow process to form stable IMC. Too fast IMC growth, however, is undesirable because it causes the dewetting of UBM and the unstable mechanical stability of thick IMC. UP to now. Ni and Cu are the most popular UBMs because electroplating is lower cost process than thin film deposition in vacuum for Al/Ni(V)/Cu or phased Cr-Cu. The consumption rate and the growth rate of IMC on Ni are lower than those of Cu. In contrast, the wetting of solder bumps on Cu is better than Ni. In addition, the residual stress of Cu is lower than that of Ni. Therefore, the alloy of Cu and Ni could be used as optimum UBM with both advantages of Ni and Cu. In this paper, the interfacial reactions of Sn-3.5Ag-0.7Cu solder on Ni-xCu alloy UBMs were investigated. The UBMs of Ni-Cu alloy were made on Si wafer. Thin Cr film and Cu film were used as adhesion layer and electroplating seed layer, respectively. And then, the solderable layer, Ni-Cu alloy, was deposited on the seed layer by electroplating. The UBM consumption rate and intermetallic growth on Ni-Cu alloy were studied as a function of time and Cu contents. And the IMCs between solder and UBM were analyzed with SEM, EDS, and TEM.

  • PDF

Effect of Residual Oxygen in a Vacuum Chamber on the Deposition of Cubic Boron Nitride Thin Film (진공조의 잔류산소가 입방정질화붕소 박막 합성에 미치는 영향)

  • Oh, Seung-Keun;Kim, Youngman
    • Journal of the Korean institute of surface engineering
    • /
    • v.46 no.4
    • /
    • pp.139-144
    • /
    • 2013
  • c-BN(cubic boron nitride) is known to have extremely high hardness next to diamond, as well as very high thermal and chemical stability. The c-BN in the form of film is useful for wear resistant coatings where the application of diamond film is restricted. However, there is less practical application because of difficult control of processing variables for synthesis of c-BN film as well as unclear mechanism on formation of c-BN. Therefore, in the present study, the structural characterization of c-BN thin film were investigated using $B_4C$ target in r.f. magnetron sputtering system as a function of processing variables. c-BN films were coated on Si(100) substrate using $B_4C$ (99.5% purity). The mixture of nitrogen and argon was used for carrier gas. The deposition processing conditions were changed with substrate bias voltage, substrate temperature and base pressure. Fourier transform infrared microscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS) were used to analyze crystal structures and chemical binding energy of the films. In the case of the BN film deposited at room temperature, c-BN was formed in the substrate bias voltage range of -400 V~ -600 V. Less c-BN fraction was observed as deposition temperature increased and more c-BN fraction was observed as base pressure increased.

Selective production of red azaphilone pigments in a Monascus purpureus mppDEG deletion mutant

  • Balakrishnan, Bijinu;Lim, Yoon Ji;Hwang, Seok Hyun;Lee, Doh Won;Park, Si-Hyung;Kwon, Hyung-Jin
    • Journal of Applied Biological Chemistry
    • /
    • v.60 no.3
    • /
    • pp.249-256
    • /
    • 2017
  • The Monascus azaphilone (MAz) pigment is a well-known food colorant that has yellow, orange and red components. The structures of the yellow and orange MAz differ by two hydride reductions, with yellow MAz being the reduced form. Orange MAz can be non-enzymatically converted to red MAz in the presence of amine derivatives. It was previously demonstrated that mppE and mppG are involved in the biosynthesis of yellow and orange MAz, respectively. However, ${\Delta}mppE$ and ${\Delta}mppG$ knockout mutants maintained residual production of yellow and orange MAz, respectively. In this study, we deleted the region encompassing mppD, mppE and mppG in M. purpureus and compared the phenotype of the resulting mutant (${\Delta}mppDEG$) with that of an mppD knockout mutant (${\Delta}mppD$). It was previously reported that the ${\Delta}mppD$ strain retained the ability to produce MAz but at approximately 10% of the level observed in the wildtype strain. A chemical analysis demonstrated that the ${\Delta}mppDEG$ strain was still capable of producing both yellow and orange MAz, suggesting the presence of minor MAz route(s) not involving mppE or mppG. Unexpectedly, the ${\Delta}mppDEG$ strain was observed to accumulate fast-eluting pigments in a reverse phase high-performance liquid chromatography analysis. A LC-MS analysis identified these pigments as ethanolamine derivatives of red MAz, which had been previously identified in an mppE knockout mutant that produces high amounts of orange MAz. Although the underlying mechanism is largely unknown, this study has yielded an M. purpureus strain that selectively accumulates red MAz.

Analysis of the Inhibition Layer of Galvanized Dual-Phase Steels

  • Wang, K.K.;Wang, H.-P.;Chang, L.;Gan, D.;Chen, T.-R.;Chen, H.-B.
    • Corrosion Science and Technology
    • /
    • v.11 no.1
    • /
    • pp.9-14
    • /
    • 2012
  • The formation of the Fe-Al inhibition layer in hot-dip galvanizing is a confusing issue for a long time. This study presents a characterization result on the inhibition layer formed on C-Mn-Cr and C-Mn-Si dual-phase steels after a short time galvanizing. The samples were annealed at $800^{\circ}C$ for 60 s in $N_{2}$-10% $H_{2}$ atmosphere with a dew point of $-30^{\circ}C$, and were then galvanized in a bath containing 0.2 %Al. X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) was employed for characterization. The TEM electron diffraction shows that only $Fe_{2}Al_{5}$ intermetallic phase was formed. No orientation relationship between the $Fe_{2}Al_{5}$ phase and the steel substrate could be identified. Two peaks of Al 2p photoelectrons, one from metallic aluminum and the other from $Al^{3+}$ ions, were detected in the inhibition layer, indicating that the layer is in fact a mixture of $Fe_{2}Al_{5}$ and $Al_{2}O_{3}$. TEM/EDS analysis verifies the existence of $Al_{2}O_{3}$ in the boundaries of $Fe_{2}Al_{5}$ grains. The nucleation of $Fe_{2}Al_{5}$ and the reduction of the surface oxide probably proceeded concurrently on galvanizing, and the residual oxides prohibited the heteroepitaxial growth of $Fe_{2}Al_{5}$.

Physical properties of $PbZrO_3-PbTiO_3-Pb(Ni_{1/3}Nb_{2/3})O_3$ thin films by sol-gel method (Sol-gel법에 의한 $PbZrO_3-PbTiO_3-Pb(Ni_{1/3}Nb_{2/3})O_3$박막의 물리적 특성)

  • 임무열;구경완;김성일;유영각
    • Electrical & Electronic Materials
    • /
    • v.9 no.10
    • /
    • pp.991-1000
    • /
    • 1996
  • PbTiO$_{3}$-PbZrO$_{3}$-Pb(Ni$_{1}$3/Nb$_{2}$3/O$_{3}$) (PZT-PNN) thin films were prepared from corresponding metal organics partially stabilized with diethanolamine by the sol-gel spin coating method. Each mol ratio of PT:PZ:PNN solutions were #1(50:40:10), #2(50:30:20), #3(45:35:20), #4(40:40:20), #5(40:50:10), #6(35:45:20) and #7(30:50:20) respectively. The spin-coated PZT-PNN films were heat-treated at 350.deg. C for decomposition of residual organics, and were sintered from 450.deg. C to 750.deg. C for crystallization. The substrates, such as Pt and Pt/TiN/Ti/TiN/Si were used for the spin coating of PZT PNN films. The perovskite phase was observed in the PZT-PNN films heat-treated at 500.deg. C. The crystalline of the PZT-PNN films was optimized at the sintering of 700.deg. C. By the result of AES analysis, It is confirmed that the films of TiN/Ti/TiN was a good diffusion barrier and that co-diffusion into the each films was not observed.

  • PDF

Effects of Oxygen on Preparation of TiO2 Thin Films by MOCVD (MOCVD법에 의한 TiO2 박막의 제조에 미치는 산소의 영향)

  • Yu, Seong-Uk;Park, Byeong-Ok;Jo, Sang-Hui
    • Korean Journal of Crystallography
    • /
    • v.6 no.2
    • /
    • pp.111-117
    • /
    • 1995
  • TiO2 thin films were prepared on a (100)silicon wafer using a chemical vapor deposition(CVD) method. The deposition experiments were performed using the TTIP in the deposition temperature ransing from 200 content. The deposition rate of TiO2 was increased with the substrate temperature and the oxygen content. The thickness of the deposited thin film and the compositional analysis of this thin films with theoxygen content were measured using Ellipsometry, SEM and ESCA, respectively. The deposited thin film was composed of a bilayer, external TiO2 and internal Ti. Carbon as a residual impurity was found to remain when zero sccm O2 was purged into a reaction chamber and the composition of the deposited thin film was found to change Ti into TiO in a deeper layer. However, when 600sccm O2 was supplied to a reaction chamber, it has been found to reside less carbon content than without O2. Finally, in the condition of 1200sccm O2, no impurity level of carbon was observed and a deeper layer consisted of the Ti composite, even though the deposited surface was composed of TiO2.

  • PDF