• Title/Summary/Keyword: residence time, removal rate constant, radionuclides, Korean last Sea

Search Result 1, Processing Time 0.015 seconds

Distribution Characteristics of $^{210}Po$ and $^{210}Pb$ in the Seawater from the Korean East Sea in Spring (봄철 동해에서 해수중 $^{210}Po$$^{210}Pb$의 농도분포특성)

  • YANG Han-Soeb;KIM Soung-Soo;LEE Jae-Chul
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.29 no.2
    • /
    • pp.238-245
    • /
    • 1996
  • Vertical profiles of $^{210}Po\;and\;^{210}Pb$ were measured for the upper 100 m of water column at six stations in the middle region of the Korean East Sea during March 1993. The distribution patterns of these radionuclides with the water mass and controlling factors on their distributions were also discussed. $^{210}Pb$ activities were generally high at surface water and gradually decrease with depth. Vertical profiles of $^{210}Po$ were relatively homogeneous except for at station E3, where chlorophyll-a concentration was the highest and $^{210}Po$ activity in the upper 30 m was lower than below 50 m. The $^{210}Po$ activities relative to its parent $^{210}Pb$ at all stations were deficient at the upper 30 m, but were excess or nearly equilibrated values below 50 m. The magnitude of $^{210}Po$ deficiency was relatively high at station E3 and E6, where strong thermocline occured. However, $^{210}Pb$ activities showed strong excess in the upper 100 m of all stations, compared with its parent $^{226}Ra$. The residence time of $^{210}Po$ ranged from 1.0 to 7.8 years, and was relatively short at station E3 and E6. The data obtained at the upper 50 m water column during $1992\~1994$, also showed that removal rate constant of $^{210}Po$ and inventories of chlorophyll-a was negatively related. This indicates that the primary production plays an important role in controlling the distributions of $^{210}Po$ at the upper water column of the Korean last Sea in spring. While, inventories of excess $^{210}Pb$ was generally decreasing with increasing density difference between 50 m and 100 m, suggesting that $^{210}Pb$ concentrations in the upper water column were controlled by stability of water column.

  • PDF