• Title/Summary/Keyword: reservoir temperature

Search Result 413, Processing Time 0.02 seconds

Temperature distribution during heavy oil thermal recovery considering the effect of insulated tubing

  • Zhang, Songting
    • Geomechanics and Engineering
    • /
    • v.19 no.6
    • /
    • pp.523-532
    • /
    • 2019
  • Based on the formation characteristics, wellbore parameters and insulated tubing (IT) parameters of the Shengli oilfield, Shandong, China, a geomechanical model is built to predict the temperature distributions of the wellbore and formation. The effects of the IT heat conductivity coefficient (HCC), well depth and IT joint on the temperature distribution of the IT, completion casing, cement sheath, and formation are investigated. Results show the temperature of the formation around the wellbore has an exponentially decreasing relation with the distance to the wellbore. The temperature of the formation around the wellbore has an inverse relation with the IT HCC when the temperatures of the steam and the formation are given. The temperature of the casing outer wall is mainly determined by the steam temperature and IT HCC rather than by the initial formation temperature. The temperature of the casing at the IT joint is much larger than that of the other location. Due to the IT joint having a small size, the effects of the IT joint on the casing temperature distribution are limited to a small area only.

Modeling of SP responses for geothermal-fluid flow within EGS reservoir (EGS 지열 저류층 유체 유동에 의한 SP 반응 모델링)

  • Song, Seo Young;Kim, Bitnarae;Nam, Myung Jin;Lim, Sung Keun
    • Geophysics and Geophysical Exploration
    • /
    • v.18 no.4
    • /
    • pp.223-231
    • /
    • 2015
  • Self-potential (SP) is sensitive to groundwater flow and there are many causes to generate SP. Among many mechanisms of SP, pore-fluid flow in porous media can generate potential without any external current source, which is referred to as electrokinetic potential or streaming potential. When calculating SP responses on the surface due to geothermal fluid within an engineered geothermal system (EGS) reservoir, SP anomaly is usually considered to be generated by fluid injection or production within the reservoir. However, SP anomaly can also result from geothermal water fluid within EGS reservoirs experiencing temperature changes between injection and production wells. For more precise simulation of SP responses, we developed an algorithm being able to take account of SP anomalies produced by not only water injection and production but also the fluid of geothermal water, based on three-dimensional finite-element-method employing tetrahedron elements; the developed algorithm can simulate electrical potential responses by both point source and volume source. After verifying the developed algorithm, we assumed a simple geothermal reservoir model and analyzed SP responses caused by geothermal water injection and production. We are going to further analyze SP responses for geothermal water in the presence of water production and injection, considering temperature distribution and geothermal water flow in the following research.

Evaluation of the future agricultural drought severity of South Korea by using reservoir drought index (RDI) and climate change scenarios (저수지 가뭄지수와 기후변화 시나리오를 이용한 우리나라 미래 농업가뭄 평가)

  • Kim, Jin Uk;Lee, Ji Wan;Kim, Seong Joon
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.6
    • /
    • pp.381-395
    • /
    • 2019
  • The purpose of this study is to predict agricultural reservoir storage rate (RSR) in a month. This algorithm was developed by multiple linear regression model (MLRM) which included the past 3 months RSRs data and the future climate change scenarios. In order to improve use of predicted RSR, this study need the severe criteria in terms of drought. So, the predicted RSR was indexed as the 3 months reservoir drought index (RDI3) and then it was disaggregated into drought duration, severity, and intensity. For the future RSR estimation by climate change scenarios, the 6 RCP 8.5 scenarios of HadGEM2-ES, CESM1-BGC, MPI-ESM-MR, INM-CM4, FGOALS-s2, and HadGEM3-RA were used in three future evaluation periods (S1: 2011~2040, S2: 2041~2070, S3: 2071~2099). The future S3 period of HadGEM2-ES scenario which has the biggest increase in precipitation and temperature showed the largest decrease to 60.2% among the 6 scenarios compared to the historical RSR (1976~2005) 77.3%. In contrast, INM-CM4 scenario which has smallest changes in precipitation and temperature in S3 period showed the smallest decrease to 72.8%. For the CESM1-BGC and MPI-ESM-MR, FGOALS-s2, and HadGEM3-RA, the S3 period RSR showed 72.6%, 72.6%, 67.4%, and 64.5% decrease respectively. The future severe drought condition of RDI3 below -0.25 showed the increase trend for the number and severity up to -2.0 during S3 period.

A Study on the Parameters of WASP5 Model in Daechung Reservoir (대청호에서 WASP5 모델 매개변수에 관한 연구)

  • Han, Woon Woo;Kim, Kyu-Hyung;Ahn, Tae-Bong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.4 no.3
    • /
    • pp.69-77
    • /
    • 2003
  • This study was carried out to evaluate the WASP5 model parameters and to analyze the sensitivity of parameters in Daechung Reservoir. The values predicted by the model and tendency were very similar to the observed data at Daejeon intake, so it is possible to predict water quality of the Daejeon intake region in the future. Results from the sensitivity analysis showed that Chlorophyll-a was sensitive to variations in saturated growth rate of phytoplankton, endogenous respiration rate of phytoplankton, extinction coefficient and temperature. T-N was sensitive to mineralization rate of dissolved organic nitrogen and temperature. T-P was affected by T-P load, temperature, extinction coefficient, mineralization rate of dissolved organic phosphorus and saturated growth rate of phytoplankton. BOD was influenced by deoxygenation rate and temperature, and DO was influenced by temperature. Adequate input data was applied and assessed through the model sensitivity analysis. So it is possible to distinguish the input data which need careful attention when it has application to model.

  • PDF

DEVELOPMENT OF ARTIFICIAL NEURAL NETWORK MODELS SUPPORTING RESERVOIR OPERATION FOR THE CONTROL OF DOWNSTREAM WATER QUALITY

  • Chung, Se-Woong;Kim, Ju-Hwan
    • Water Engineering Research
    • /
    • v.3 no.2
    • /
    • pp.143-153
    • /
    • 2002
  • As the natural flows in rivers dramatically decrease during drought season in Korea, a deterioration of river water quality is accelerated. Thus, consideration of downstream water quality responding to changes in reservoir release is essential for an integrated watershed management with regards to water quantity and quality. In this study, water quality models based on artificial neural networks (ANNs) method were developed using historical downstream water quality (rm $\NH_3$-N) data obtained from a water treatment plant in Geum river and reservoir release data from Daechung dam. A nonlinear multiple regression model was developed and compared with the ANN models. In the models, the rm NH$_3$-N concentration for next time step is dependent on dam outflow, river water quality data such as pH, alkalinity, temperature, and rm $\NH_3$-N of previous time step. The model parameters were estimated using monthly data from Jan. 1993 to Dec. 1998, then another set of monthly data between Jan. 1999 and Dec. 2000 were used for verification. The predictive performance of the models was evaluated by comparing the statistical characteristics of predicted data with those of observed data. According to the results, the ANN models showed a better performance than the regression model in the applied cases.

  • PDF

Analysis of the Effects of Bathymetry Data on Hydraulic Results - Daecheong Reservoir - (저수지 모델의 지형정보 엽력자료가 수리결과에 미치는 영향 분석 - 대청호를 대상으로 -)

  • Lee, Jae-Yil;Seo, Se-Deok;Ha, Sung-Ryong
    • Journal of Environmental Impact Assessment
    • /
    • v.18 no.4
    • /
    • pp.229-234
    • /
    • 2009
  • A lot of research on the application of GIS has been conducted in the field of water quality management. The function of a geometric data acquisition for reservoir and river models, however, is not enough to satisfy multiuser' convenience. CE-QUAL-W2 is a two-dimensional(2D) longitudinal/vertical hydrodynamic and water quality model for surface water bodies, modeling eutrophication processes such as temperature-nutrient-algae and sediment relationships. The purpose of this study is to analyzing which bathymetry information affects hydraulic results. There are consisted of three scenarios under consideration. The first scenario takes into account only tribatary type data such as Heoin and Okchen river. The second scenario, Heoin river constructs to tributary and Okchen river constructs by branch. Last scenario constructs Heoin and Okchen river by branch. The RMSE error results for the first, second and third scenarios are 0.61, 0.36 and 0.28 respectively.

Micro-meteorological Characteristics during the Steam Fog over the Gumi Reservoir of Nakdong River (낙동강 구미 보의 증기 안개 발생 시의 미기상학적 특성)

  • Kim, Hae-Dong;Cho, Chang-Bum;Seo, Kwang-Su
    • Journal of Environmental Science International
    • /
    • v.25 no.3
    • /
    • pp.405-415
    • /
    • 2016
  • We analyzed the micro-meteorological characteristics during typical steam fog over the Gumi Reservoir of Nakdong river with the field observation data for recent 2 year(1 April 2013~31 March 2015) collected by the national institute of meteorological research, KMA. Steam fog occur when the cold drainage flows over the warm water surface. As the sensible and latent heat from water are provided to the air, the instability of lower atmosphere is increased. The resultant vertical mixing of warm, moist air near water surface and cold air aloft causes the formation of status cloud. The convection strengthened by radiative cooling of the upper part of the stratus causes the fog to propagate downward. Also, the temperature at the lowest atmosphere is increased rapidly and the inversion near surface disappear by these processes when the fog forms. The increase of wind speed is observed because the downward transportation of momentum is caused by vertical mixing.

The Relationship of Vegetation and Environmental Factors in Wangsuk Stream and Gwarim Reservoir: I. Water Environments

  • Lee, Bo-Ah;Kwon, Gi-Jin;Kim, Jae-Geun
    • The Korean Journal of Ecology
    • /
    • v.28 no.6
    • /
    • pp.365-373
    • /
    • 2005
  • Understanding the relation of water environmental factors and vegetation is critical to restoration and management of wetlands. To reveal relationships between representative plant groups and water environments, we measured cover and abundance of plant species, water depth, temperature, pH, conductivity, dissolved oxygen, $NH_4$-N, $NO_3$-N, and $PO_4-P$ concentration in water in Wangsuk stream (WS) and Gwarim reservoir (GR). This study was conducted monthly from May to October, 2004. Six vegetation groups $(W1{\sim}W6)$ in WS and five vegetation groups $(G1{\sim}G5)$ in GR were identified using TWINSPAN. WS was characterized by Phragmites japonica, Digitaria sanguinalis, Phalaris arundinacea, Beckmannia xyzigachne and Persicara hydropiper, Persicaria thunbergii, Typha angustifolia. GR was characterized by T. angustifolia, Scirpus tabernaemontani, P. thunbergii, Humulus japonicus and Scirpus fluviatilis, Typha orientalis, Zizania latifolia. The vegetation in WS experienced greater seasonal changes than in GR. A correspondence analysis suggests that water depth was the major environmental factor influencing the distribution of most plants communities in both wetlands.

Copper and Lead Concentrations in Water, Sediments, and Tissues of Asian Clams (Corbicula sp.) in Bung Boraphet Reservoir in Northern Thailand (2008)

  • Netpae, Tinnapan;Phalaraksh, Chitchol
    • Environmental Engineering Research
    • /
    • v.15 no.1
    • /
    • pp.35-40
    • /
    • 2010
  • Bung Boraphet is the largest freshwater reservoir in Thailand. This study examined the accumulation of copper (Cu) and lead (Pb) in water, sediment and tissues of Asian clams (Corbicula sp.) within Bung Boraphet to assess the possible polluting effect of soil erosion and the dissolution of water soluble salts from the Nan River. Samples were collected from 12 study sites within Bung Boraphet between February and December 2008. The physicochemical parameters of the water including temperature, pH, turbidity, ammonia nitrogen, nitrate nitrogen, orthophosphates, biochemical oxygen demand, dissolved oxygen, Cu, and Pb were measured. The water in Bung Boraphet was found to be medium clean according to the surface water quality standard of Thailand. The levels of Cu and Pb in the water were low but heavy metals were detected at higher levels in the sediment and tissues of Corbicula sp. In the near future, management practices and regulator approaches for Cu and Pb contamination will be needed to protect the water in Bung Boraphet.

Characteristics of Aquatic Environment and Algal Bloom in a Small-scaled Agricultural Reservoir (Jundae Reservoir) (소규모 농업용 전대저수지의 수환경 변화와 조류발생 특성)

  • Nam, Gui-Sook;Lee, Eui-Haeng;Kim, Mirinae;Pae, Yo-Sup;Eum, Han-Young
    • Korean Journal of Environmental Biology
    • /
    • v.31 no.4
    • /
    • pp.429-439
    • /
    • 2013
  • This study was conducted to identify the relationship between environmental factors and algal bloom, and provide information for efficient management based on the results of monitoring the environmental parameters and algal diversity in the Jundai reservoir from March 2011 to October 2013. Little change in the weather conditions was observed during the study period except for a slight decrease in rainfall. Concentration of TN and TP in the reservoir exceeded water quality standards for agriculture and significant correlation between algal growth and environmental factors was observed. Phytoplankton in Jundai reservoir included 6 classes, 40 genus, 62 species, and the phytoplankton abundance was in the range of $1.3{\times}10^4{\sim}2.8{\times}10^6$ cells $mL^{-1}$. The annual average of phytoplankton abundance and Chl-a gradually decreased as TN and TP concentrations decreased. Overall Anabaena sp., Oscillatoria sp., and Microcystis sp. were the dominant species in Jundai reservoir. As the water temperature increased, the dominant species were Anabaena sp., Microcystis sp. and Oscillatoria sp., in that order. Anabaena sp. was dominant from spring to early summer with increase in water temperature and pollutant concentrations, and high correlation with environmental factors was observed. Microcystis sp. was dominant depending on changes in the nutrient levels. In the case of Oscillatoria sp., there was no significant correlation between phytoplankton biomess and Chl-a. However, efficient management of water environment and practical control of algal bloom in small scale reservoir polluted by livestock and farm irrigation should be achieved by identification of the relationship between algal growth and environmental factors.