• Title/Summary/Keyword: research tool

Search Result 8,743, Processing Time 0.036 seconds

Representation of cutting forces and tool deflection in end milling using Fourier series (엔드밀 가공에서 푸리에 급수를 이용한 절삭력 및 공구변형 표현)

  • Ryu S.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.781-785
    • /
    • 2005
  • Cutting forces and tool deflection in end milling are represented as the closed form of tool rotational angle and cutting conditions. The discrete cutting forces caused by tool entry and exit are continued using the Fourier series expansion. Tool deflection is predicted by direct integration of the distributed loads on cutting edges. Cutting conditions, tool geometry, run-outs and the stiffness of tool clamping pan are considered for cutting forces and tool deflection estimation. Compared to numerical methods, the presented method has advantages in short prediction time and the effects of feeding and run-outs on cutting forces and tool deflection can be analyzed quantitatively. This research can be effectively used in real time machining error estimation and cutting condition selection for error minimization since the ferm accuracy is easily predicted by tool deflect ion curve.

  • PDF

A Study on the Compensation of Milling Errors by Regenerating of Tool Trajectory (공구 궤적 재구성에 의한 밀링 가공 오차의 보상에 관한 연구)

  • 쟝이브하스퀘트;필립데팡세;서태일
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.11
    • /
    • pp.137-144
    • /
    • 1998
  • In this paper we present our research dealing with the problem of tool deflection during the milling. We try to compensate the errors by considering a new tool trajectory. In order to determine the compensated tool trajectory, the problem is divided in three steps : cutting forces model, tool deflection model and trajectory compensation. Starting from experimental data, we determine a cutting forces model., which allows us to anticipate the tool deflection along one nominal path. In order to determine the compensated tool trajectory, we propose in this paper a method of path compensation, called “mirror method”. This method of tool path optimization allows to minimize errors due to tool deflection. Several examples are processed in simulations and validated experimentally.

  • PDF

Contour Parallel Offsetting and Tool-Path Linking Algorithm For Pocketing (포켓가공을 위한 오프셋 및 공구경로 연결 알고리즘)

  • Huh Jin-Hun;Kim Young-Yil;Jun Cha-Soo
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2003.05a
    • /
    • pp.200-207
    • /
    • 2003
  • Presented in this paper is a new fast and robust algorithm generating NC tool path for 2D pockets with islands. The input shapes are composed of line segments and cricular arcs. The algorithm has two steps: creation of successive offset loops and linking the loops to tool path. A modified pair-wise technique is developed in order to speed up and stabilize the offset process, and the linking algorithm is focused on minimizing tool retractions and preventing thin-wall rotting The proposed algorithm has been implemented In C++ and some illustrative examples are presented to show the practical strength of the algorithm.

  • PDF

Simulation Tool of Rectangular Deflection Yoke for CRT

  • Woo, Duck-Kee;Park, Jong-Jin;Cheun, Jong-Mok;Park, Moo-Yong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.1141-1146
    • /
    • 2003
  • We have developed the three-dimensional simulation tool for the design of deflection yoke. This tool consists of a modeler, a solver and a post-processor. The modeler easily makes models of Deflection Yoke (DY) and ferrite core (Circle, RAC and RTC) by the parameters and supports several element types (line, surface and quadrilateral). The solver calculates charge density and magnetic field of DY by boundary element method (BEM). We can simply evaluate misconvergence, distortion and inductance of DY in the post-processor, so we apply this simulation tool to 32" rectangular deflection yoke. We can conveniently implement the efficient development of DY in the future.

  • PDF

Research on creative property and education of digital authoring tools (디지털저작도구의 창의적 특성과 교육에 관한 연구: 3D 애니메이션 저작도구(3DStudioMax)를 중심으로)

  • Kim, Dae woo
    • Cartoon and Animation Studies
    • /
    • s.31
    • /
    • pp.57-89
    • /
    • 2013
  • Animation tool has been made changes rapid development of animation from analog tool to digital authoring tool. Depending on the change in the status of digital authoring tools, education of digital authoring tool has brought many changes occurred in the institute and university. Digital authoring tool was insufficient for research of authoring tool due to the recognition that authoring tool is a simple tool. I try to resolve the difficulties through the analysis digital authoring tools to students studying at the university. In addition, Suggests social/cultural change of animation practitioners and effective training methods of digital authoring tools in the education of beginners and practitioners. This tool have perceptual knowledge and narrative knowledge. Since the language features and knowledge features is difficult to learn. it must be learned knowledge of computer graphics of professional level properly to learn. Then users should try to be creative within the authoring tool to produce creative results. also formed the community and to exchange information for self-development further it should form job market that authoring tool make formed through medium. So, I think that there is a need to change academically attitude to authoring tool. because this is not only the positive side but it occurs phenomenon to enslave users in authoring tool, and blind faith in the authoring tool or critical stance on software. It was a lot of pre-existing research that investigate engineering and industrial side in the authoring tool. Through this thesis, We will find social/cultural features and academic significance, and investigate that how to approach the method of education.

Micro cutting process technology for micro molds parts (마이크로 금형 부품을 위한 마이크로 절삭가공 기술)

  • Ha, Seok-Jae;Park, Jeong-Yeon;Kim, Gun-Hee;Yoon, Gil-Sang
    • Design & Manufacturing
    • /
    • v.13 no.1
    • /
    • pp.5-12
    • /
    • 2019
  • In this paper, we studied the micro tool deflection, micro cutting with low temperature, and deformation of micro ribs caused by cutting forces. First, we performed an integrated machining error compensation method based on captured images of tool deflection shapes in micro cutting process. In micro cutting process, micro tool deflection generates very serious problems in contrast to macro tool deflection. To get the real images of micro tool deflection, it is possible to estimate tool deflection in cutting conditions modeled and to compensate for machining errors using an iterative algorithm correcting tool path. Second, in macro cutting fields, the cryogenic cutting process has been applied to cut the refractory metal but, the serious problem may be generated in micro cutting fields by the cryogenic environment. However, if the proper low temperature is applied to micro cutting area, the cooling effect of cutting heat is expected. Such effect can make the reduction of tool wear and burr formation. For verifying this passibility, the micro cutting experiment at low temperature was performed and SEM images were analyzed. Third, the micro pattern was deformed by the cutting forces and the shape error occurred in the sidewall multi-step cutting process were minimized. As the results, the relationship between the cutting conditions and the deformation of micro-structure during micro cutting process was investigated.

Extraction of Research and Development Project for Improving the International Competitiveness of Machine Tool Industry (공작기계 산업의 국제 경쟁력 향상을 위한 연구개발과제 도출)

  • 이석우
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.2 no.1
    • /
    • pp.19-30
    • /
    • 2001
  • Machine tool (Mother machine) is the basis of industrial development and it largely has an effect on the quality improvement and Productivity improvement of machinery products because it demands high technical abilities such as design, machining. control and assembling which reflect the technical level of a country. But, in case of domestic companies. it is difficult to secure good engineers and enough fund for developing machine tool, which can not narrow the gap with advanced machine tool manufacturing companies. Therefore, this Project focused on the extraction of research and development project to improve the international competitiveness of machine tool industry through comprehending problems that domestic companies have and investigating the research trend in domestic and international countries.

  • PDF

Research of a new tie-dyeing tool based on 3D printing technology

  • Tu, Dan Dan;Kim, Sohyun
    • The Research Journal of the Costume Culture
    • /
    • v.30 no.1
    • /
    • pp.161-171
    • /
    • 2022
  • Traditional tie-dyeing is widely implemented in the clothing handicraft culture in China, South Korea, and Japan. Since it was developed 2,000 years ago, it has become a popular method of fabric making in the world and is highly respected by fashion designers. Based on the existing traditional tie-dyeing methods, this study conducted specific research on the 3D printing technology of the SLS laser method and the micro tool design application method of the clamp-dyeing process. Through the experimental methods of this study, it proposes to use the "7000 Nylon" material, which is commonly used in 3D printing, to develop a new clamp-dyeing tool. This new tool can be widely used in the clamp-dyeing of fabrics, such as cotton, hemp, silk, and some chemical fibers. The applied method and principle can be consistent with the traditional clamp-dyeing method. Therefore, the innovation of tie-dyeing technology is the best protection measure for the development and inheritance of traditional fabric making. The continuation of artistic life needs originality, which is also the best response to market competition. At the same time, this new design of the clamp-dyeing tool has the characteristics of novelty, innovation, and rich changes, which aligns with the new fashion demands of current fabric design.

Development of a Tool to Automate One-Dimensional Finite Element Analysis of Machine Tool Spindles

  • Choi, Jin-Woo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.2
    • /
    • pp.172-176
    • /
    • 2015
  • In this research, a tool was developed to automate one-dimensional finite element analysis (1D FEA) for design of a machine tool spindle. Based on object-oriented programing, this tool employs the objects of a CAD system to construct a geometric model and then to convert it into the FE model of 1D beams at the workbenches of the CAD system with minimum data to define the spindle such as bearing positions and cross-sections of the shaft. Graphic user interfaces were developed for users to interact with the tool. This tool is helpful in identifying a near optimal design of the spindle with the automation of the FEA process with numerous design changes in minimum time and efforts. It is also expected to allow even design engineers to perform the FEA in search of an optimal design of the machine tool spindle.

Prediction and Detection of Tool Wear and Fracture in Machining (절삭시 발생하는 공구마멸의 예측 및 파괴의 검출에 관한 연구)

  • 김영태;고정한;박철우;이상조
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.8
    • /
    • pp.116-125
    • /
    • 1998
  • In this paper, main target is to select parameters for prediction of tool wear and detection of tool fracture. The research about choosing parameter for prediction of tool wear is done by using force ratios. Also current sensor, tool-dynamometer, and accelerometer are used for researching detection method of tool fracture. Experiment is done using Taguchi's method in medium machining conditions. Parameter which is best for prediction of tool wear and detection of tool fracture by deviation analysis is selected. In this paper, tool wear means flank wear.

  • PDF