• Title/Summary/Keyword: research tendon

Search Result 217, Processing Time 0.023 seconds

Development and Evaluation of a Portable Micro-Current Stimulator for Acute Lateral Epicondylitis (급성 외측 상과염 치료를 위한 휴대용 미세전류자극기 개발 및 효과 검증)

  • Kwon, Hyeok Chan;Lee, Hyun Ju;Tae, Ki Sik
    • Journal of Biomedical Engineering Research
    • /
    • v.40 no.2
    • /
    • pp.68-74
    • /
    • 2019
  • Lateral epicondylitis is caused by repeated use of the wrist, which causes inflammation and pain in the wrist extensor and tendon of the humerus. Delayed onset muscle soreness (DOMS) caused by repetitive resistance exercise affects the tendons connected in series with the muscle, leading to lateral epicondylitis. Although micro-current stimulation has been suggested as a possible treatment for tendinitis, there are insufficient studies on specific variables such as frequency. In this study, 15 healthy adult males and females developed DOMS in the wrist extensor and tendon in the humerus. The experimental group consisted of a low frequency group applying 20 Hz and a high frequency group applying 100 Hz according to the micro-current frequency. Each subject underwent an experiment for 5 days after DOMS, and the recovery rates were compared by measuring AROM, GPT, MST, PPT, and VAS. As a result, the 20 Hz group showed significant changes in AROM, MST, and VAS compared to the control group on the 4th day, and the recovery rate was also higher than that of the 100 Hz group. On the 5th day, recovery rate of 100 Hz group was higher than 20 Hz in AROM and PPT, and MST showed higher recovery rate than 20 Hz group, but there was no significant difference. These results indicate that microcurrent stimulation is effective for the treatment of delayed myalgia and tendon inflammation and that the 100 Hz group has faster recovery than the 20 Hz group.

Feasibility Study of Submerged Floating Tunnels Moored by an Inclined Tendon System

  • Won, Deokhee;Kim, Seungjun
    • International journal of steel structures
    • /
    • v.18 no.4
    • /
    • pp.1191-1199
    • /
    • 2018
  • Concepts of submerged floating tunnels (SFTs) for land connection have been continuously suggested and developed by several researchers and institutes. To maintain their predefined positions under various dynamic environmental loading conditions, the submerged floating tunnels should be effectively moored by reasonable mooring systems. With rational mooring systems, the design of SFTs should be confirmed to satisfy the structural safety, fatigue, and operability design criteria related to tunnel motion, internal forces, structural stresses, and the fatigue life of the main structural members. This paper presents a feasibility study of a submerged floating tunnel moored by an inclined tendon system. The basic structural concept was developed based on the concept of conventional cable-stayed bridges to minimize the seabed excavation, penetration, and anchoring work by applying tower-inclined tendon systems instead of conventional tendons with individual seabed anchors. To evaluate the structural performance of the new type of SFT, a hydrodynamic analysis was performed in the time domain using the commercial nonlinear finite element code ABAQUS-AQUA. For the main dynamic environmental loading condition, an irregular wave load was examined. A JONSWAP wave spectrum was used to generate a time-series wave-induced hydrodynamic load considering the specific significant wave height and peak period for predetermined wave conditions. By performing a time-domain hydrodynamic analysis on the submerged floating structure under irregular waves, the motional characteristics, structural stresses, and fatigue damage of the floating tunnel and mooring members were analyzed to evaluate the structural safety and fatigue performance. According to the analytical study, the suggested conceptual model for SFTs shows very good hydrodynamic structural performance. It can be concluded that the concept can be considered as a reasonable structural type of SFT.

Performance Assessment of Precast Concrete Segmental Bridge Columns with Shear Resistance Connecting Structure (전단저항 연결체를 갖는 프리캐스트 세그먼트 교각의 성능평가)

  • Kim, Tae-Hoon;Kim, Young-Jin;Kim, Seong-Woon;Shin, Hyun-Mock
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4A
    • /
    • pp.591-601
    • /
    • 2008
  • The purpose of this study was to investigate the performance of precast concrete segmental bridge columns with shear resistance connecting structure. The system can reduce work at a construction site and makes construction periods shorter. A model of precast concrete segmental bridge columns with shear resistance connecting structure was tested under a constant axial load and a cyclically reversed horizontal load. A computer program, RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), for the analysis of reinforced concrete structures was used. An bonded or unbonded tendon element based on the finite element method, that can represent the interaction between tendon and concrete of prestressed concrete member, is used. A joint element is newly modified to predict the inelastic behaviors of segmental joints. The proposed numerical method gives a realistic prediction of performance throughout the loading cycles for several test specimens investigated.

Research on Variable Girder Types and Tendon Arrangement of PSC Box Girder Bridges by using the Optimum Design (최적설계에 의한 PSC 박스 거더교의 변단면 거더유형과 긴장재 배치에 관한 연구)

  • Kim, Ki-Wook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.3
    • /
    • pp.175-185
    • /
    • 2006
  • This study performed the optimum design of balanced and unbalanced span length bridges with many variable Girder types by using the optimum design program to minimize the cost for PSC box girder bridge of the full staging method. The objective of this study is to present tendon's application direction about complicated construction hereafter by studying about optimum tendon arrangement that is worked in each variable Girder type. This program used SUMT procedure and Kavlie's extended penalty function to allow infeasible design points in the process. Powell's direct method was used in searching design points and Gradient Approximate Method was used to reduce design hours.

Magnetic Resonance Imaging and Ultrasonographic Evaluation of Canine Tarsus

  • Soomin Park;Sang-hwa Ryu;Jae-gwan Heo;Eun-jee Kim;Jihye Choi;Junghee Yoon
    • Journal of Veterinary Clinics
    • /
    • v.41 no.2
    • /
    • pp.79-87
    • /
    • 2024
  • The tarsus in dogs has a complex structure that makes its evaluation relatively challenging. Because an accurate diagnosis of the tarsus is difficult through basic examinations alone, imaging tests are essential. Previous studies have explored the anatomical and radiological features of the canine tarsus using several imaging modalities. However, the imaging utility of the tarsus across different modalities has not been thoroughly evaluated. This study aimed to visualize the tarsal structures using magnetic resonance imaging (MRI) and ultrasonography, compare their utility, and propose suitable imaging modalities and conditions for evaluating specific tarsal structures. Magnetic resonance imaging and ultrasound scans of the tarsus of four healthy dogs were performed, and two observers rated the utility of each image on a five-point scale. Although MRI is more beneficial for assessing the tarsal structures than ultrasound, ultrasound also appears clinically useful for evaluating the cranial tibialis muscle, deep digital flexor tendon, subcutaneous fat, joint space, and superficial digital flexor tendon. In addition, each structure of interest can be evaluated for optimal visibility using specific ultrasound sections, MRI sequences, and planes. In veterinary clinical practice, an initial assessment using ultrasound imaging with optimal visibility is required and if further evaluation is necessary, MRI examinations with optimal MRI sequences and planes can be performed.

The Evaluation of an additional Weight Shoe's Function developed for the Improvement of Aerobic Capacity (유산소 운동능력 향상을 위한 중량물 부가 신발의 기능성 평가)

  • Kwak, Chang-Soo;Kim, Hee-Suk
    • Korean Journal of Applied Biomechanics
    • /
    • v.14 no.3
    • /
    • pp.67-82
    • /
    • 2004
  • The purpose of this study was to evaluate the function and the safety of an additional weight shoe developed for the improvement of aerobic capacity, and to improve some problems found by subject's test for an additional weight shoe. The subjects employed for this study were 10 college students. 4 video cameras, AMTI force platform and Pedar insole pressure distribution measurement device were used to analyze foot motions. The results of the study were as follows: 1 The initial achilles tendon angle and initial rearfoot pronation angle of an additional weight shoe during walking were 183.7 deg and 2.33 deg, respectively, and smaller than a barefoot condition. Maximum achilles tendon angle and the angular displacement of achilles tendon angle were 185.35 deg and 4.21 deg respectively, and smaller than barefoot condition. Thus rearfoot stability variables were within the permission value for safety. 2. Maximal anterior posterior ground reaction force of additional weight shoe was appeared to be 1.01-1.2 B.W., and was bigger than a barefoot condition. The time to MAPGRF of an additional weight shoe was longer than a barefoot condition. Maximal vertical ground reaction force of additional weight shoe was appeared to be 2.3-2.7 B.W., and was bigger than a barefoot condition in propulsive force region. But A barefoot condition was bigger in braking force region. The time to MVGRF of an additional weight shoe was longer than a barefoot condition. 3. Regional peak pressure was bigger in medial region than in lateral region in contrast to conventional running shoes. The instant of regional peak pressure was M1-M2-M7-M4-M6-M5 -M3, and differed form conventional running shoes. Regional Impulse was shown to be abnormal patterns. There were no evidences that an additional weight shoe would have function and safety problems through the analysis of rearfoot control and ground reaction force during walking. However, There appeared to have small problem in pressure distribution. It was considered that it would be possible to redesign the inner geometry. This study could not find out safety on human body and exercise effects because of short term research period. Therefore long term study on subject's test would be necessary in the future study.

A Study on the Optimum Cross-section and Tendon Profiles of 60 m span Half-Decked PSC Girder Bridge (Half-Deck을 포함한 60 m 경간 PSC 거더의 단면 및 텐던 프로파일 최적화 연구)

  • Kim, Tae Min;Kim, Do-Hak;Kim, Moon Kyum;Lim, Yun Mook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.6A
    • /
    • pp.417-424
    • /
    • 2011
  • This study focused on development of 60 m span PSC girder considering not only structural performance, but also economical efficiency and constructability including from the improvement of cross-section to the tendon profiles in sequence. Bulb-T type cross section was derived from optimization and actual possibilities to design a bridge were assessed through cross section evaluation. Tendons were also arranged efficiently so that the girder could resist the service load effectively. After developed girder was applied to a sample bridge, result of finite element analysis proved all load steps were satisfied with the allowable stress. Furthermore, it seemed that sufficient redundancy will be available to design a bridge safely. Based on these, a full-scale 60 m span girder was fabricated and 4 point bending test was performed. An initial crack occurred over twice of the service load in this experiment, which establishes adequate structural performance. 60 m span Half-Decked PSC girder developed in this study has a lower height for the given span which resulted from cross section improvement and efficient tendon layout. This girder also has not only the structural advantage, but also advantages in economical efficiency and constructability.

Development of Analysis Tool for Structural Behavior of Domestic Containment Building with Grouted Tendon (CANDU-type) (국내 부착식 텐던 격납건물(CANDU형)의 구조거동 분석 도구 개발)

  • Lee, Sang-Keun;Song, Young-Chul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5A
    • /
    • pp.901-908
    • /
    • 2006
  • The structural integrity of containment building in Nuclear Power Plants has to be verified by the ISI(In Service Inspection) because there are some variations on the structural behavior of it due to the change of the physical properties of concrete and tendon with the lapse of time. In this study, the program 'SAPONC-CANDU' which can monitor and analyze the structural behavior of the containment building with grouted tendon (CANDU-type, 'Wolsong unit-2, 3, and 4' in Korea) was developed. This program is based on the algorithm which can calculate the prediction values of the quantities of strain variation for the vibrating-wire strain gauges embedded into the concrete of the containment building under temperature and time dependent factors which are creep, shrinkage, and prestressing force. The readings of the strain gauges are used as input data for the operation of the program. And it finally provides graphically a prediction value, line and band of the quantity of strain variation for the respective strain gauges, therefore, it is thought that the site engineers are able to assess the structural integrity of the domestic containment building with grouted tendon with easy using this program.

Sonographic observation of the paradoxical masseteric bulging and clinical implication of functional compartment

  • Kyu-Ho Yi;Hyungkyu Bae;Soo-Bin Kim;Woo-Ram Kim;Won Lee;Ji-Soo Kim;Hee-Jin Kim
    • Anatomy and Cell Biology
    • /
    • v.57 no.1
    • /
    • pp.13-17
    • /
    • 2024
  • Masseter are commonly botulinum neurotoxin targeted muscle for facial contouring in aesthetic field. However, paradoxical masseteric bulging is common adverse effect that has not been discussed with ultrasonographic observations. Retrospective study has been conducted from October, 2021 to January, 2023, out of 324 patients have done blinded botulinum neurotoxin injection in the masseter at the middle and lower portion of the masseter with each side of 25 units (letibotulinum neurotoxin type A), 3 patients demonstrated paradoxical masseteric bulging has been reported and the image observed by ultrasonography by physician. Based on the observations made, we can infer that the function of the moving muscle involves twisting of the muscle fibers during contraction, along with the twisting of the deep inferior tendon, which causes the muscle to be divided into anterior and posterior compartments rather than into superficial and deep compartments of masseter. In ultrasonographic observe the skin surface of a patient with paradoxical masseteric bulging, it is observable that either the anterior or posterior part contracts significantly. The functional units of anterior and posterior compartment are observable as muscular contraction of inward movement of the muscle from either the anterior or posterior functional unit.

Development of a Bridge Transported Servo Manipulator System for the Remote Operation and Maintenance of Advanced Spent Fuel Conditioning Process (사용후 핵연료 차세대관리공정 원격 운전/유지보수용 천정이동 서보 매니퓰레이터 시스템 개발)

  • Park, Byung-Suk;Lee, Jong-Kwang;Lee, Hyo-Jik;Choi, Chang-Hwan;Yoon, Kwang-Ho;Yoon, Ji-Sup
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.10
    • /
    • pp.940-948
    • /
    • 2007
  • The Advanced Spent Fuel Conditioning Process(ACP), which is the process of the reduction of uranium oxide by lithium metal in a high temperature molten salt bath for spent fuel, was developed at Korea Atomic Energy Research Institute (KAERI). Since the ACP equipment is located in an intense radiation field (hot cell) as well as in a high temperature, it must be remotely operated and maintained. The ACP hot cell is very narrow so the workspace of the wall-mounted mechanical Master-Slave Manipulators(MSMs) is restricted. A Bridge Transported Servo Manipulator(BTSM) system has been developed to overcome the limitation of an access that is a drawback of the mechanical MSMs. The BTSM system consists ot a bridge crane with telescoping tubeset, a slave manipulator, a master manipulator, and a control system. We applied a bilateral position-position control scheme with friction compensation as force-reflecting controller. In this paper, the transmission characteristics on the tendon-and-pulley train is numerically formulated and analyzed. Also, we evaluate the performance of the force-reflecting servo manipulator.