• Title/Summary/Keyword: research synthesis

Search Result 5,516, Processing Time 0.029 seconds

Evidence for the Ras-Independent Signaling Pathway Regulating Insulin-Induced DNA Synthesis

  • Jhun, Byung-H.
    • BMB Reports
    • /
    • 제32권2호
    • /
    • pp.196-202
    • /
    • 1999
  • The existence of the Ras-independent signal transduction pathway of insulin leading to DNA synthesis was investigated in Rat-1 fibroblasts overexpressing human insulin receptor (HIRc-B) using the single-cell microinjection technique. Microinjection of a dominant-negative mutant $Ras^{N17}$ protein into quiescent HIRc-B cells inhibited the DNA synthesis stimulated by insulin. Microinjection of oncogenic H-$Ras^{V12}$ protein ($H-Ras^{V12}$) (0.1 mg/ml) induced DNA synthesis by 35%, whereas that of control-injected IgG was induced by 20%. When the marginal amount of oncogenic H-$Ras^{V12}$ protein was coinjected with a dominant-negative mutant of the H-Ras protein ($Ras^{N17}$), DNA synthesis was 35% and 74% in the absence and presence of insulin, respectively. This full recovery of DNA synthesis by insulin suggests the existence of the Ras-independent pathway. The same recovery was observed in the cells coinjected with either H-$Ras^{V12}$ plus H-$Ras^{N17}$ plus SH2 domain of the p85 subunit of PI3-kinase ($p85^{SH2-N}$) or H-$Ras^{V12}$ plus H-$Ras^{N17}$ plus interfering anti-Shc antibody. When co-injected with a dominant-negative H-$Ras^{N17}$, the DNA synthesis induced by the Ras-independent pathway was blocked. These results indicate that the Ras-independent pathway of insulin leading to DNA synthesis exists, bypassing the p85 of PI3-kinase and Shc protein, and requires Rac1 protein.

  • PDF

Synthesis of 1-(2-Naphthoyl) Benzotriazoles as Photoactivated DNA Cleaving Agents

  • Yang, Jae-Wook;Wender, Paul-A.
    • Archives of Pharmacal Research
    • /
    • 제20권2호
    • /
    • pp.197-199
    • /
    • 1997
  • In conclusion, benzotriazole analogs prepared in this research showed strong possibility to be photochemically activated DNA cleaving agents. Electrophilic groups such as haloacetoxy groups on the alkyl chain of benzotriazole analogs promote the DNA cleaving ability. Synthesis of 1-(2-Naphthoyl) Benzotriazoles.

  • PDF

Extracellular Vesicles from Korean Codium fragile and Sargassum fusiforme Negatively Regulate Melanin Synthesis

  • Jang, Bohee;Chung, Heesung;Jung, Hyejung;Song, Hyun-Kuk;Park, Eunhye;Choi, Hack Sun;Jung, Kyuhyun;Choe, Han;Yang, Sanghwa;Oh, Eok-Soo
    • Molecules and Cells
    • /
    • 제44권10호
    • /
    • pp.736-745
    • /
    • 2021
  • Although various marine ingredients have been exploited for the development of cosmetic products, no previous study has examined the potential of seaweed extracellular vesicles (EV) in such applications. Our results revealed that EV from Codium fragile and Sargassum fusiforme effectively decreased α-MSH-mediated melanin synthesis in MNT-1 human melanoma cells, associated with downregulation of MITF (microphthalmia-associated transcription factor), tyrosinase and TRP1 (tyrosinase-related proteins 1). The most effective inhibitory concentrations of EV were 250 ㎍/ml for S. fusiforme and 25 ㎍/ml for C. fragile, without affecting the viability of MNT-1 cells. Both EV reduced melanin synthesis in the epidermal basal layer of a three-dimensional model of human epidermis. Moreover, the application of the prototype cream containing C. fragile EV (final 5 ㎍/ml) yielded 1.31% improvement in skin brightness in a clinical trial. Together, these results suggest that EV from C. fragile and S. fusiforme reduce melanin synthesis and may be potential therapeutic and/or supplementary whitening agents.

Synthesis of an Aspartame Precursor Using Immobilized Thermolysin in an Organic Solvent

  • Ahn, Kyung-Seop;Lee, In-Young;Kim, Ik-Hwan;Park, Young-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • 제4권3호
    • /
    • pp.204-209
    • /
    • 1994
  • The synthesis of N-(benzyloxycarbonyl)-L-aspartyl-L-phenylalanine methylester (Z-APM), a precursor of aspartame, from N-(benzyloxycarbonyl)-L-aspartic acid (Z-Asp) and L-phenylalanine methylester hydrochlolide($L-PM\cdot HCI$) was investigated in a saturated-ethylacetate single phase system using immobilized thermolysin. Among the various supports tested, glyceryl-CPG was found to be most efficient for retaining enzyme activity. The enzyme immobilized onto glyceryl-CPG also showed the highest activity for Z-APM synthesis in saturated ethyl acetate. Z-APM conversion yield in saturated ethylacetate was half of that obtained in an ethyl acetate-buffer two-phase system under the same reaction conditions. However, as the mole ratio of $L-PM \cdot HCI$ to Z-Asp was increased to 4.0, the conversion yield reached 95 %. When continuous synthesis of Z-APM was canied out in a plug flow reactor (PFR) with 80 mM of L-PMㆍHCI and 20 mM of Z-Asp in saturated ethylacetate (pH 5.5), more than 95 % of Z-Asp was converted to Z-APM with a space velocity of 1.16 $hr^{-1} at 40^{\circ}C$. Although the operational stability in PFR was reduced rapidly, more than 80% of initial activity was maintained in CSTR even after a week of operation.

  • PDF

The development of a fully automated homemade system for [11C] acetate synthesis using an open source PLC

  • Kang, Se Hun;Hong, Sung Tack;Park, Kwangseo;Kim, Seok-ki
    • 대한방사성의약품학회지
    • /
    • 제2권2호
    • /
    • pp.103-107
    • /
    • 2016
  • Solid phase extraction (SPE) purification method is the efficient and well-known tool for automated [$^{11}C$]acetate synthesis. A fully automated homemade module adopting the SPE method and 'pinch' valves was developed very economically with a universal interface board, a relay card and an open source programmable logic controller. The radiochemical yield of the optimized [$^{11}C$]acetate synthesis by this system was $58.8{\pm}2.1%$ (n=10, decay-corrected) from $15.5{\pm}0.19GBq$ of $[^{11}C]CO_2$ as starting activity, and total synthetic time was 15 minutes. HPLC analysis showed its high radiochemical purity as $97.4{\pm}1.1%$ without possible by-products.

Studies on the mechanism of cytotoxicities of polyacetylenes against L1210 cell

  • Kim, Young-Sook;Jim, Seung-Ha;Kim, Shin-Il;Hahn, Dug-Ryong
    • Archives of Pharmacal Research
    • /
    • 제12권3호
    • /
    • pp.207-213
    • /
    • 1989
  • This study was performed to investigate the mechanism of in vitro cytotosic actions of polyacetylenes which are panaxydol, panaxynol and panaxytriol isolated from Panax ginseng C. A. Meyer. DNA synthesis of L1210 cells was significantly inhibited with dose dependent pattern when L1210 cells were treated for 1 hour with over 5 .mu.g/ml of polyacetylenes. Panaxydol which had the most potent cytotoxicity among three polyacetylenes showed also the strongest inhibitory effect on DNA synthesis. Intracellular cyclic AMP levels of L1210 cells treated with 2.5 $\mu$g/ml of panaxydol or panaxytriol were significantly elevated on the incubation duration. The elevation of cyclic AMP levels by panaxytriol was higher than that by panaxydol, but no significant increase in cyclic AMP by panaxynol was observed. All three polyacetylenes had no effect on glycolysis of L1210 cells. Electron microscopic observations revealed that polyacetylenes caused damage to plasma membranes of L1210 cells in proportion to their cytotoxicities at each $ED_{50}$ value (panaxydol > panaxynol> panaxytriol). These results suggest that cytotoxicities of polyacetylenes against L1210 cells might be mediated by elevated cyclic AMP level, even though the relationship among their cytotoxicities, inhibitory effect on DNA synthesis and ability to elevation of cyclic AMP level are not fully agreed, and might be also related to membrane damage.

  • PDF