• 제목/요약/키워드: research process

검색결과 37,533건 처리시간 0.063초

CONCEPTUAL MODEL OF RFID APPLICATION IN PREFABRICATION INSTALLATION PROCESS

  • V. Peansupap;T. Tongthong;B. Hasiholan
    • 국제학술발표논문집
    • /
    • The 2th International Conference on Construction Engineering and Project Management
    • /
    • pp.279-288
    • /
    • 2007
  • Attempts to achieve a higher productivity have led studies to focus on process improvement. Information has been found as an essential element for process improvement. This research has introduced and focused on two types of information, namely: related jobsite information along the process and feedback information. Related jobsite information along the process which needs to be processed and delivered in a timely manner, accurate, and real time is required to streamline the decision making process. Whereas feedback information about process' current practices which have to be captured and stored is a useful for continuous improvement in identifying the problem origin and determining corrective action. In the current practices, although these two types of information are essential for process improvement, construction process has faced barriers in obtaining that information. Therefore, this research will propose a new information system to overcome the aforementioned barriers. The new information system consists of RFID as an automatic identification and data collection device integrated with database to support construction processes. The new system attempts to provide related jobsite information along the process and feedback information to support decision making process and continuous process improvement respectively. A case study of prefabrication installation process in housing projects has been selected to be implemented in conceptual model of RFID application in construction industry. Conceptual model will be presented in this paper as an initial stage of this ongoing research. Expected outcomes of the new system and future works will be discussed briefly.

  • PDF

Performance Analysis of Upgrading Process with Amine-Based CO2 Capture Pilot Plant

  • Kwak, No-Sang;Lee, Junghyun;Lee, Dong Woog;Lee, Ji Hyun;Shim, Jae-Goo
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제4권1호
    • /
    • pp.33-38
    • /
    • 2018
  • This study applied upgrades to the processes of a 10 MW wet amine $CO_2$ capture pilot plant and conducted performance evaluation. The 10 MW $CO_2$ Capture Pilot Plant is a facility that applies 1/50 of the combustion flue gas produced from a 500 MW coal-fired power plant, and is capable of capturing up to 200 tons of $CO_2$. This study aimed to quantitatively measure efficiency improvements of post-combustion $CO_2$ capture facilities resulting from process upgrades to propose reliable data for the first time in Korea. The key components of the process upgrades involve absorber intercooling, lean/rich amine exchanger efficiency improvements, reboiler steam TVR (Thermal Vapor Recompression), and lean amine MVR (Mechanical Vapor Recompression). The components were sequentially applied to test the energy reduction effect of each component. In addition, the performance evaluation was conducted with the absorber $CO_2$ removal efficiency maintained at the performance evaluation standard value proposed by the IEA-GHG ($CO_2$ removal rate: 90%). The absorbent used in the study was the highly efficient KoSol-5 that was developed by KEPCO (Korea Electric Power Corporation). From the performance evaluation results, it was found that the steam consumption (regeneration energy) for the regeneration of the absorbent decreased by $0.38GJ/tonCO_2$ after applying the process upgrades: from $2.93GJ/ton\;CO_2$ to $2.55GJ/tonCO_2$. This study confirmed the excellent performance of the post-combustion wet $CO_2$ capture process developed by KEPCO Research Institute (KEPRI) within KEPCO, and the process upgrades validated in this study are expected to substantially reduce $CO_2$ capture costs when applied in demonstration $CO_2$ capture plants.

중수 재이용을 위한 오존 고도산화 및 세라믹 분리막 일체형 공정의 최적화 연구 (Optimization of an Advanced Oxidation with Ozone and Ceramic Membrane Integrated Process for Greywater Reuse)

  • 이종훈;노호정;박광덕;우윤철
    • 한국물환경학회지
    • /
    • 제37권6호
    • /
    • pp.433-441
    • /
    • 2021
  • The aim of this study was to optimize the ozonation and ceramic membrane integrated process for greywater reclamation. The integrated process is a repeated sequential process of filtration and backwash with the same ceramic membrane. Also, this study used ozone and oxygen gas for the backwashing process to compare backwashing efficiency. The study results revealed that the optimum filtration and backwash time for the process was 10 minutes each when comparing the filtrate flow and membrane recovery rate. The integrated process was operated at three different operating conditions with i) 10 minutes for filtration and 10 minutes for ozonation, ii) 10 minutes for filtration and 10 minute for oxygen aeration, and iii) continuous filtration without any aeration for synthetic greywater. The integrated process with ozone backwashing could produce 0.55 L/min of filtrate with an average of 18.42% permeability recovery, while the oxygen backwashing produced 0.47 L/min and 6.26%, respectively. And without any backwashing, the integrated process could produce 0.29 L/min. This shows that the ozone backwash process is capable of periodically recovering from membrane fouling. The resistance of the fouled membrane was approximately 34.4% for the process with ozone backwashing, whereas the resistance was restored by 10.8% for the process with oxygen backwashing. Despite the periodical ozone backwashing and chemical cleaning, irreversible fouling gradually increased approximately 3 to 4%. Approximately 97.6% and 15% turbidity and TOC were removed by ceramic membrane filtration, respectively. Therefore, the integrated process with ozonation and ceramic membrane filtration is a potential greywater treatment process.

HOT CELL RENOVATION IN THE SPENT FUEL CONDITIONING PROCESS FACILITY AT THE KOREA ATOMIC ENERGY RESEARCH INSTITUTE

  • YU, SEUNG NAM;LEE, JONG KWANG;PARK, BYUNG SUK;CHO, ILJE;KIM, KIHO
    • Nuclear Engineering and Technology
    • /
    • 제47권6호
    • /
    • pp.776-790
    • /
    • 2015
  • Background: The advanced spent fuel conditioning process facility (ACPF) of the irradiated materials examination facility (IMEF) at the Korea Atomic Energy Research Institute (KAERI) has been renovated to implement a lab scale electrolytic reduction process for pyroprocessing. The interior and exterior structures of the ACPF hot cell have been modified under the current renovation project for the experimentation of the electrolytic reduction process using spent nuclear fuel. The most important aspect of this renovation was the installation of the argon compartment within the hot cell. Method: For the design and system implementation of the argon compartment system, a full-scale mock-up test and a three-dimensional (3D) simulation test were conducted in advance. The remodeling and repairing of the process cell (M8a), the maintenance cell (M8b), the isolation room, and their utilities were also planned through this simulation to accommodate the designed argon compartment system. Results and conclusion: Based on the considered refurbishment workflow, previous equipment in the M8 cell, including vessels and pipes, were removed and disposed of successfully after a zoning smear survey and decontamination, and new equipment with advanced functions and specifications were installed in the hot cell. Finally, the operating area and isolation room were also refurbished to meet the requirements of the improved hot cell facility.

Development of Inorganic Alignment Technique with One Drop Filling Processon LCoS Panel

  • Wang, Jiun-Ming;Lo, Yu-Cheng;Liu, Sheng-Fa;Huang, Li-Chen;Chen, Kun-Hong;Liu, Kuang-Hua;Li, Huai-An;Sun, Oliver;Yang, Shih-Tsung
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2006년도 6th International Meeting on Information Display
    • /
    • pp.1235-1238
    • /
    • 2006
  • One-Drop-Filling (ODF) process is an advanced vacuum filling process in LCoS manufacture line. The merits not only increase the throughput of liquid crystal filling process but also reduce the number of equipments. Studying application of ODF process in LCoS panel manufacturing is the purpose of is this article. The accuracy of liquid crystal drop size, the stability of seal dispensing and the nozzle size etc. In the tiny panel manufacture are more important than those factors in normal panel manufacture.

  • PDF

염수 전기분해와 연계한 이산화탄소의 전환 공정 연구 (A Study on a Process for Conversion of Carbon Dioxide through Saline Water Electrolysis)

  • 이동욱;이지현;이정현;곽노상;이수진;심재구
    • Korean Chemical Engineering Research
    • /
    • 제55권1호
    • /
    • pp.86-92
    • /
    • 2017
  • 석탄 화력발전 연소 배가스에 포함된 이산화탄소를 염수의 전기분해를 통해 얻어진 가성소다와 반응시켜 중탄산나트륨, 염소, 수소 등을 생산하는 공정에 대하여 실험과 전산모사를 병행하였다. Bench 규모 공정을 디자인하여 가성소다에 의한 이산화탄소 전환 공정에 대하여 실험하였고 같은 공정을 공정 모델링을 통해 전산모사 하였다. 실험결과와 전산모사 결과의 비교를 통해 모델의 신뢰성을 확인하였고, 상용급 공정에 대한 모델링을 수행하였다. 상용급 공정에 대한 열 및 물질수지를 계산하였고 반응기내 온도분포와 $CO_2$ 흡수율을 도출하였다. 본 연구를 통해 온실가스 저감뿐만 아니라 $CO_2$ 전환을 통한 경제성까지 갖춘 본 공정에 대한 기술 신뢰성을 확보할 수 있을 것이다.