본 총설은 1980년대부터 최근까지 국내외 학술잡지나 심포지움 등에 발표된 인삼의 주요 임상효능 연구결과를 요약 고찰하고, 그 임상 적응증과 안전성 등에 대한 검토를 통해 금후 인삼의 임상적 활용성 제고와 인삼의 진정한 약용가치 평가를 위한 임상연구의 발전에 도움을 주고자 하였다. 당뇨병을 비롯한 동맥경화성 질환, 고혈압, 악성질환, 성기능 장애 등의 만성질환에 대한 그 동안의 연구결과는 인삼의 치료효과보다는 예방 및 회복제로서의 효용성을 보여 주었다. 특히 이들 질환의 각종 자각적 장해증상과 장기 약물치료의 부작용으로 인한 QOL의 악화에 에 대한 개선효과가 관찰되었다. 그러나 인삼의 효과는 일반적으로 mild 하여 일차적 치료보다는 관행적 약물요법과 병용할 때 보조요법제로서 또는 부작용을 보다 적게 하는 효과가 기대된다. 또한 주요 강장효능과 관련하여 작업수행능력에 미치는 임상연구 결과는 인삼복용이 각종 스트레스 상태하의 신체적 조건에 대한 적응능력을 개선시켜 육체적 정신적 기능저하를 회복시키는 효과를 보였다. 이러한 임상시험에서 얻어진 결과가 그대로 인삼의 적응증(indication)이라고 단정할 수는 없으며, 그 효능의 과학적 증거들에 대해서는 아직도 논란이 많고, 임상실험의 유효성 평가와 관련된 방법론적 문제점도 많이 지적되고 있다. 보다 확실한 적응증 제시를 위해서는 표준화된 인삼시료를 이용하여 보다 체계적인 시험설계에 의한 객관적 효능평가가 필요하다. 한편 인삼(제품)복용에 의한 부작용(adverse effects)의 발생 가능성에 대한 사례보고들도 대부분 인삼의 과량복용이나 품질관리 미흡에서 기인되는 것으로 여겨지고 있다. 최근 해외 시장에서 유통되는 인삼제품 품질검사에서 사포닌 성분의 불검출 또는 함량 미달과 유해성분의 오염가능성 등 부정적 견해들이 다수 보고되었다. 그러나 표준화된 인삼제품의 추천 복용량을 사용한 대부분의 임상실험에서는 거의 유의할만한 부작용은 인정되지 않았다. 금후 연구와 관련하여, 품질표준의 지표성분으로 간주되는 진세노사이드의 절대함량과 그 성분조성 차이에 따른 임상효과의 차별성이 있는지에 대한 검토와, 특히 최근 실험적으로 밝혀지고 있는 사포닌 성분의 장내 세균에 의한 생물전환체의 인체 실험을 통한 효과 검정이 필요하다. 나아가서는 적정 복용량의 설정과 이와 관련되는 생체내 동태 및 생체이용율(bioavilability)에 관한 정보가 거의 없으므로 이것도 금후 검토해야 할 과제로 사료된다. 인삼은 전통약물로서 오랜 역사성과 그동안의 연구결과에 의한 과학성을 가지고 있으므로 건강유지와 병의 예방 및 회복촉진을 위한 보조요법제 또는 기능성 식품으로써의 유용성이 있는 것으로 판단된다. 앞으로 인삼의 활용성 증대를 위해서는 보다 과학적인 임상평가에 의한 안전성 및 유효성 입증과 제품의 엄격한 품질관리의 필요성이 더욱 강조되어야 할 것이다.
최근 전 세계적인 원전 설비의 수요 증가로 원자력 전략물자 취급의 중요성이 높아지는 가운데, 국외 수출을 위한 원전 관련 물품 및 기술의 신청 또한 급증하는 추세이다. 전략물자 사전판정 업무는 통상 원자력 물자 관리에 해박한 전문가의 경험 및 지식에 근거하여 수행되어 왔지만, 급증하는 수요에 상응하는 전문 인력의 공급이 부족한 실정이다. 이러한 문제를 극복하기 위하여, 본 연구진은 전략물자 수출 통제를 위한 사례 기반 지능형 수출 통제 시스템을 설계 및 개발하였다. 이 시스템은 현장 전문가의 전담 업무이던 신규 사례에 대한 전략물자 사전판정 과정 업무의 주요 맥락을 자동화 하여 전문가 및 관계 기관이 감당해야 할 업무 부담을 줄이며, 빠르고 정확한 판정을 돕는 의사결정 지원 시스템의 역할을 맡는다. 개발된 시스템은 사례 기반 추론 (Case Based Reasoning) 방식에 기반을 두어 설계되었는데, 이는 과거 사례의 특성을 활용하여 신규 사례의 해법을 유추하는 추론 방법이다. 본 연구에서는 자연어로 작성된 전자문서 처리에 널리 사용되는 텍스트 마이닝 분석 기법을 원자력 분야에 특화된 형태로 응용하여 전략물자 수출통제 시스템을 설계하였다. 시스템 설계의 근거로 선행 연구에서 제안된 반자동식 핵심어 추출 방안의 성능을 보다 엄밀히 검증하였고, 추출된 핵심어로 신규 사례와 유사한 과거 사례를 추출하는 알고리즘을 제안하였다. 제안된 방안은 텍스트 마이닝 분야의 TF-IDF 방법 및 코사인 유사도 점수를 활용한 결과(${\alpha}$)와 원자력 분야에서 통용되는 개념적 지식을 계통으로 분류하여 도출한 결과(${\beta}$)를 조합하여 최종 결과 (${\gamma}$) 를 생성하게 된다. 세부 요소 기술의 성능 검증은 임상 데이터를 활용한 실험 및 실무 전문가의 의견수렴을 통해 이루어졌다. 개발된 시스템은 사전판정 전문 인력을 다수 양성하는 데 드는 비용을 절감하는 데 일조할 것이며, 지식서비스 산업의 의미 있는 응용 사례로서 관련 산업의 성장에 기여할 수 있을 것으로 보인다.
소셜미디어 확산으로 많은 사용자들이 SNS를 통해 자신의 생각과 의견을 표출하며 다른 사용자들과 상호작용하고 있다. 특히 트위터와 같은 마이크로블로그는 짧은 문장을 통해 영화, TV, 사회 현상 등과 같은 공통의 주제에 대해 많은 사람이 즉각적으로 의견을 표출하고 교환하는 플랫폼의 역할을 수행하고 있다. TV방송 프로그램에 대해서도 의견과 감정을 마이크로블로그를 통해 표출하고 있는데, 본 연구에서는 마이크로블로그의 내용과 시청률과의 관계를 살펴보기 위해, 지난 공중파 방송 프로그램에 대한 트윗을 수집하고 부적절한 트윗들을 제거한 후 형태소 분석을 수행하였다. 추출된 형태소뿐 아니라 이모티콘, 신조어 등 사용자가 입력한 모든 단어들을 후보 자질로 삼아 시청률과의 상관관계를 분석하였다. 실험을 위해 2013년 1월부터 10개월간의 예능프로그램 트윗의 데이터를 수집하여 전국 시청률 데이터와 비교 분석을 수행하였다. 트윗의 발생량은 일주일 중 방송된 요일에 가장 많았으며, 특히 방송시간 부근에서 급격히 증가하는 모습을 보였다. 이것은 전국에 동시간에 방송되는 공중파 프로그램의 특성상 공통된 관심 주제를 제공하기 때문에 나타나는 현상으로 여겨진다. 횟수 기반 자질로 방송 일의 총 트윗 수와 리트윗 수, 방송시간 중의 트윗 수와 리트윗 수와 시청률과의 상관 관계를 분석하였으나 모두 낮은 상관 계수를 나타냈다. 이것은 단순한 트윗 발생 빈도는 방송 프로그램의 만족도 또는 시청률을 제대로 반영하고 있지 못함을 의미한다. 내용 기반 자질로 추출한 단어들 중에는 높은 상관관계를 보여주는 단어들이 발견되었으며, 표준어가 아닌 이모티콘과 신조어 중에도 높은 상관관계를 보여주는 자질이 나타났다. 또한 방송시작 전과 후에 따라 상관계수가 높은 단어가 상이함을 발견하였다. 매주 같은 시간에 방송되는 TV 프로그램의 특성상, 방송을 기다리고 기대하는 내용의 트윗과 방송 후 소감을 표현하는 트윗의 내용에 차이가 존재하였다. 이러한 분석결과는 단어에 따라 시청률과 연관성이 높은 시간대가 달라짐을 의미하며, 시청률을 측정하고자 할 때 각 단어들의 시간대를 고려해서 사용해야 함을 의미한다. 본 연구에서 제안한 방법은 기존의 표본 추출을 통해 이루어지는 TV 시청률 측정을 보완할 수 있는 방법에 활용할 수 있으리라 기대된다.
연관 상품 추천은 수많은 상품을 다루는 온라인 상거래에서 소비자의 상품 탐색 시간을 줄여주며 판매자의 매출 증대에 크게 기여한다. 이는 주문과 같은 거래의 빈도를 기반으로 생성되므로, 통계적으로 판매 확률이 높은 상품을 효과적으로 선별할 수 있다. 하지만, 판매 가능성이 높은 경우라도 신상품처럼 판매 초기에 거래 건수가 충분하지 않은 상품은 추천에서 누락될 수 있다. 연관 추천에서 누락된 상품은 이로 인해 노출 기회를 잃게 되고, 이는 거래 건수 감소로 이어져, 또 다시 추천 기회를 잃는 악순환을 겪을 수도 한다. 따라서, 충분한 거래 건수가 쌓이기 전까지 초기 매출은 일정 기간 동안 정체되는 현상을 보이는데, 의류 등과 같이 유행에 민감하거나 계절 변화에 영향을 많이 받는 상품은 이로 인해 매출에 큰 타격을 입을 수도 있다. 본 연구는 이와 같이 거래 초기의 낮은 거래 빈도로 인해 잘 드러나지 않는 상품 간의 잠재적인 연관성을 찾아 추천 기회를 확보할 수 있도록 연관 규칙을 확장하기 위한 목적으로 수행되었다. 두 상품 간에 직접적인 연관성이 나타나지 않더라도 다른 상품을 매개로 두 상품 간의 잠재적 연관성을 예측할 수 있을 것이며, 이런 연관성은 주문에서 나타나는 상품 간 상호작용으로 표현될 수 있으므로, 사회연결망 분석을 활용한 분석을 시도하였다. 사회연결망 분석기법을 통해 각 상품의 속성과 두 상품 간 경로의 특성을 추출하고 회귀분석을 실시하여, 두 상품 간 경로의 최단 거리 및 경로의 개수, 각 상품이 얼마나 많은 상품과 연관성을 갖는지, 두 상품의 분류 카테고리가 어느 정도 일치하는지가 두 상품 간의 잠재적 연관성에 미친다는 것을 확인하였다. 모형의 성능을 평가하기 위해, 일정 기간의 주문 데이터로부터 연결망을 구성하고, 이후 10일 간 생성될 상품 간 연관성을 예측하는 실험을 진행하였다. 실험 결과는 모형을 적용하지 않는 경우보다 제안 모형을 활용할 때 훨씬 많은 연관성을 찾을 수 있음을 보여준다.
최근 빅데이터 분석 수요의 지속적 증가와 함께 관련 기법 및 도구의 비약적 발전이 이루어지고 있으며, 이에 따라 빅데이터 분석은 소수 전문가에 의한 독점이 아닌 개별 사용자의 자가 수행 형태로 변모하고 있다. 또한 전통적 방법으로는 분석이 어려웠던 비정형 데이터의 활용 방안에 대한 관심이 증가하고 있으며, 대표적으로 방대한 양의 텍스트에서 주제를 도출해내는 토픽 모델링(Topic Modeling)에 대한 연구가 활발히 진행되고 있다. 전통적인 토픽 모델링은 전체 문서에 걸친 주요 용어의 분포에 기반을 두고 수행되기 때문에, 각 문서의 토픽 식별에는 전체 문서에 대한 일괄 분석이 필요하다. 이로 인해 대용량 문서의 토픽 모델링에는 오랜 시간이 소요되며, 이 문제는 특히 분석 대상 문서가 복수의 시스템 또는 지역에 분산 저장되어 있는 경우 더욱 크게 작용한다. 따라서 이를 극복하기 위해 대량의 문서를 하위 군집으로 분할하고, 각 군집별 분석을 통해 토픽을 도출하는 방법을 생각할 수 있다. 하지만 이 경우 각 군집에서 도출한 지역 토픽은 전체 문서로부터 도출한 전역 토픽과 상이하게 나타나므로, 각 문서와 전역 토픽의 대응 관계를 식별할 수 없다. 따라서 본 연구에서는 전체 문서를 하위 군집으로 분할하고, 각 하위 군집에서 대표 문서를 추출하여 축소된 전역 문서 집합을 구성하고, 대표 문서를 매개로 하위 군집에서 도출한 지역 토픽으로부터 전역 토픽의 성분을 도출하는 방안을 제시한다. 또한 뉴스 기사 24,000건에 대한 실험을 통해 제안 방법론의 실무 적용 가능성을 평가하였으며, 이와 함께 제안 방법론에 따른 분할 정복(Divide and Conquer) 방식과 전체 문서에 대한 일괄 수행 방식의 토픽 분석 결과를 비교하였다.
개인화 추천에서 많이 사용되는 협업 필터링은 고객들의 구매이력을 기반으로 유사고객을 찾아 상품을 추천할 수 있는 매우 유용한 기법으로 인식되고 있다. 그러나, 전통적인 협업 필터링 기법은 사용자 간에 직접적인 연결과 공통적인 특징을 기반으로 유사도를 계산하는 방식으로 인해 신규 고객 혹은 상품에 대해 유사도를 계산하기 힘들다는 문제가 제기되어 왔다. 이를 극복하기 위하여, 다른 기법을 함께 사용하는 하이브리드 기법이 고안되기도 하였다. 이런 노력의 하나로서, 사회연결망의 구조적 특성을 적용하여 이런 문제를 해결하려는 시도가 있었다. 이는, 직접적으로 유사성을 찾기 힘든 사용자 간에도 둘 사이에 놓인 유사한 사용자 또는 사용자들을 통해 유추해내는 방식으로 상호 간의 유사성을 계산하는 방식을 적용한 것이다. 즉, 구매 데이터를 기반으로 사용자의 네트워크를 생성하고 이 네트워크 내에서 두 사용자를 간접적으로 이어주는 네트워크의 특성을 기반으로 둘 사이의 유사도를 계산하는 것이다. 이렇게 얻은 유사도는 추천대상 고객이 상품의 추천에 대한 수락여부를 결정하는 척도로 활용될 수 있다. 서로 다른 중심성 척도는 추천성과에 미치는 영향이 서로 다를 수 있다는 점에서 중요한 의미를 갖는다 할 수 있다. 이런 유사도의 계산을 위해서 네트워크의 중심성을 활용할 수 있다. 본 연구에서는 여기서 더 나아가 이런 중심성이 추천성과에 미치는 영향이 추천 알고리즘에 따라서도 다를 수 있다는 데에서 주목하여 수행되었다. 또한, 이런 네트워크 분석을 활용한 추천기법은 신규 고객 혹은 상품뿐만 아니라 전체 고객 혹은 상품으로 그 대상을 넓히더라도 추천 성능을 높이는 데 기여할 것을 기대할 수 있을 것이다. 이런 관점에서 본 연구는 네트워크 모형에서 연결선이 생성되는 것을 이진 분류의 문제로 보고, 추천 모형에 적용할 분류 기법으로 의사결정나무, K-최근접이웃법, 로지스틱 회귀분석, 인공신경망, 서포트 벡터 머신을 선택하고, 온라인 쇼핑몰에서 4년2개월간 수집된 구매 데이터로 실험을 진행하였다. 사회연결망에서 측정된 중심성 척도를 각 분류 기법에 적용하여 생성한 모형을 비교 실험한 결과, 각 모형 별로 중심성 척도의 추천성공률이 서로 다르게 나타남을 확인할 수 있었다.
결제서비스에 대한 기존의 연구는 결제서비스의 채택요인 또는 지속적인 사용에 영향을 미치는 요인 등 행동이론을 중심으로 진행되어 왔다. 이러한 요인들이 미치는 영향에 대한 결과는 결제서비스의 종류에 따라 또는 연구 지역에 따라 상이하게 나타나고 있다. 본 연구는 결제 서비스의 종류나 문화등의 변수에 관계없이 새로운 결제 서비스가 성공할 수 있는 일반적인 요인이 무엇인지에 대한 의문에서 시작하게 되었다. 기존 연구에서 중요한 영향을 미친다고 제시한 채택요인들은 실제 결제사례의 결과에 비추어 보면 기존 연구에서 주장한 바와 일치하지 않는 경우를 볼 수 있다. 이러한 이론과 현실사이의 괴리를 발견하고 새로운 결제서비스가 성공하기 위한 근본적이고 결정적인 요인이 무엇인지에 대해 제시하고 사례연구를 통해 가설을 입증하고자 하는 것이 본 연구의 목적이다. 따라서 본 연구는 새로운 결제서비스가 성공하기 위해서는 기존 결제서비스의 비고객에게 이들이 결제할 수 있는 수단을 제공함으로써 새로운 결제 시장을 창출해야 함을 주장한다. 이를 위해 성공한 결제사례인 신용카드, 휴대폰 소액결제, PayPal, Square을 채택하였으며, 기존 결제서비스의 비고객을 3개의 계층으로 분류하여 분석하였다. 그리고 새로운 결제서비스가 어떠한 계층을 타겟으로 하였으며 이들에게 어떠한 결제수단을 제공하여 새로운 시장을 창출하였는지 제시한다. 사례 분석 결과, 성공 사례 모두 본 연구의 가설을 지지하는 것으로 나타났다. 따라서 새로운 결제서비스는 결국 기존의 결제수단으로 거래를 할 수 없었던 이들이 결제를 할 수 있도록 함으로써 성공할 수 있다는 가설을 입증하였다. 모바일 결제서비스가 아직 대중화되지 못한 원인을 본 가설에 비추어 분석해 보면 보면, 기존의 결제 인프라를 이용할 수 있는 바코드, QR코드 기반의 모바일 결제 서비스뿐만 아니라 NFC, BLE, 음파 등의 새로운 기술이 적용된 모바일 결제 서비스가 출시되는 등 새로운 시도가 계속되고 있다. 또한 모바일 월렛은 사용자들이 소지하고 있는 카드정보를 스마트폰에 저장하여 지갑 없이도 결제가 가능하며, 쿠폰 제공, 적립카드 관리, 신분증을 저장하는 등의 다양한 부가적인 기능을 제공하고 있어 성공할 것이라는 전망이 대두되고 있다. 하지만 이러한 서비스들은 본 연구 관점에서 보자면 기존 결제서비스의 비고객이(기존 결제수단을 이용할 수 없었던 사용자) 거래할 수 있는 새로운 결제 수단을 제공해 주지 못하고 있기 때문에 결국 초기사용자에게만 채택될 뿐 대중화되는데 한계가 있을 것으로 예상된다. 반면, 새로운 모바일 결제서비스의 성공사례 중 하나인 PaybyPhone은 기존 코인주차 결제서비스의 비고객인 현금 미소지 고객에게 스마트폰을 이용한 새로운 결제수단을 제공함으로써 새로운 주차 결제 시장을 창출하였으며 현재 미국뿐만 아니라 유럽시장까지 진출하는 등 급성장하고 있다. 결론적으로, 많은 이해관계자들이 모바일 결제시장을 선점하기 위해 다양한 형태의 모바일 결제 서비스를 출시하고 있지만 캐즘을 뛰어넘어 주류 시장에 성공적으로 정착할 수 있느냐는 결국 기존 결제서비스의 비고객군에게 그들이 필요로 하는 새로운 결제수단을 제공하는지의 여부에 달려있다고 볼 수 있다. 따라서 모바일 결제 서비스의 기획자나 매니저들은 서비스 기획 시 기존 결제서비스의 비고객군은 누구인가? 그들은 어떠한 결제수단을 원하는가?를 먼저 고려해야 한다. 본 연구는 새로운 결제서비스가 성공하는데 미치는 요인에 대한 가설을 검증하기 위해 4개의 성공사례를 선택하였으며 각 사례에 동일한 가설을 검증하는 '반복연구논리'를 적용하였다. 본 가설을 더욱 공고히 하기 위해 사례연구방법론에서 제시하고 있는 경쟁가설을 포함한 후속 사례연구가 진행되어야 할 것이다.
전자정부를 포함한 다양한 형태의 공공서비스가 제공됨에 따라 공공서비스 품질에 대한 국민의 요구 수준이 점점 높아지고 있다. 공공서비스의 품질을 높이기 위해서 공공서비스 품질에 대한 상시적 측정과 개선이 필요함에도 불구하고 전통적인 설문조사는 비용과 시간이 많이 소요되어 한계가 있다. 따라서 공공서비스에서 발생하는 데이터를 기반으로 원하는 시점에 언제라도 공공서비스의 품질을 빠르고 정확하게 측정할 수 있는 분석적 기법이 필요하다. 본 연구에서 공공서비스의 품질을 데이터 기반으로 분석하기 위해 N시의 건축 인허가 민원 서비스를 대상으로 프로세스 마이닝 기법을 이용하여 분석하였다. N시의 건축 인허가 민원 서비스는 분석에 필요한 데이터를 확보할 수 있고 공공서비스 품질관리를 통해 타 기관으로 확산 가능할 것으로 판단되었기 때문이다. 본 연구는 2014년 1월부터 2년 동안 N시에서 발생한 총 3678건의 건축 인허가 민원 서비스에 대해 프로세스 마이닝을 실시하여 프로세스 맵을 그리고 빈도가 높은 부서와 평균작업시간이 긴 부서를 파악하였다. 분석 결과에 따르면 특정 시점에 한 부서별로 업무가 몰리거나 상대적으로 업무가 적은 경우가 발생하였다. 또한 민원의 부하가 늘 경우 민원완료까지 걸리는 시간이 늘어날 것이라는 합리적인 의심을 하였으나 분석 결과 상관관계는 크게 없었다. 분석 결과에 따르면 민원완료까지 걸리는 시간은 당일처리에서 1년 146일까지 매우 다양하게 분포하였다. '하수처리과,' '수도과,' '도시디자인과,' '녹색성장과'의 상위 4개 부서의 누적빈도가 전체의 50%를 넘고 상위 9개 부서의 누적빈도가 70%를 넘어서는 등 빈도가 높은 부서는 한정적이며 부서 간 부하의 불균형이 심했다. 대부분의 민원 서비스는 서로 다른 다양한 패턴의 프로세스를 갖고 있었다. 본 연구의 결과를 활용하면 특정 시점에 민원의 부하가 큰 부서를 찾아내 부서 간 인력 배치를 탄력적으로 운영할 수 있을 것이다. 또한 민원 특성별 협의에 참여하는 부서의 패턴을 분석한 결과, 협의 부서 요청 시 자동화 혹은 추천에 활용할 수 있는 가능성이 보인다. 본 연구는 민원 서비스에 대한 프로세스 마이닝 분석을 통해 향후 공공서비스 품질 개선방향을 제시하는데 활용될 것으로 기대한다.
스마트폰의 보급으로 인해 개인화된 데이터를 활용하고자 하는 서비스들이 증가하고 있다. 특히, 헬스케어와 관련된 서비스들은 다양한 데이터를 다루며, 이를 효과적으로 보여주기 위해 데이터 시각화 기법을 활용하고 있다. 데이터 시각화 기법이 활용되면서 자연스럽게 시각화에서의 인터랙션 또한 함께 강조되고 있다. PC 환경에서 데이터 시각화에 대한 인터랙션은 마우스로 이루어지기 때문에, 데이터에 대한 필터링이 다양하게 제공되고 있다. 반면, 모바일 환경에서의 인터랙션은 화면의 크기가 작고, 인터랙션 가능 여부를 인지하기 어려워 버튼 터치 방식으로 앱에서 제공하는 제한된 시각화만을 제공받을 수 있다. 이러한 모바일 환경에서의 인터랙션 한계를 극복하기 위해, 챗봇과의 대화를 통해 데이터 시각화 인터랙션을 가능하게 하여 사용자들에게 개개인의 데이터를 다양한 시각화를 통해 확인할 수 있도록 하고자 한다. 이를 위해서는 사용자의 질의를 쿼리로 변환하여, 주기적으로 데이터를 축적하고 있는 데이터베이스에서 변환된 쿼리를 통해 결과 데이터를 불러올 수 있어야 한다. 자연어를 쿼리로 변환하는 연구는 현재 많이 이루어지고 있지만, 시각화를 기반으로 하여 사용자의 질의를 쿼리로 변환하는 연구에 대해서는 아직 이루어지지 않았다. 따라서, 본 논문에서는 사전에 데이터 시각화 기법이 정해진 상황에서의 쿼리 생성에 초점을 맞추고자 한다. 지원하는 인터랙션은 태스크 x-축 값에 대한 필터링 및 두 그룹 간 비교이다. 테스트 시나리오는 걸음 수에 대한 데이터를 활용하였으며, x-축 기간에 대한 필터링은 바 그래프, 두 그룹간 비교는 라인 그래프로 나타내었다. 시각화를 통해 요청한 정보를 제공받을 수 있는 자연어처리 모델을 개발하기 위해 1,000명을 대상으로 한 설문조사를 통해 약 15,800개의 학습 데이터를 수집하였다. 알고리즘 개발 및 성능 평가를 진행한 결과, 분류 모델에서는 약 89%, 쿼리 생성 모델에서는 약 99% 정확도를 보였다.
딥러닝 프레임워크의 대표적인 기능으로는 '자동미분'과 'GPU의 활용' 등을 들 수 있다. 본 논문은 파이썬의 라이브러리 형태로 사용 가능한 프레임워크 중에서 구글의 텐서플로와 마이크로소프트의 CNTK, 그리고 텐서플로의 원조라고 할 수 있는 티아노를 비교하였다. 본문에서는 자동미분의 개념과 GPU의 활용형태를 간단히 설명하고, 그 다음에 logistic regression을 실행하는 예를 통하여 각 프레임워크의 문법을 알아본 뒤에, 마지막으로 대표적인 딥러닝 응용인 CNN의 예제를 실행시켜보고 코딩의 편의성과 실행속도 등을 확인해 보았다. 그 결과, 편의성의 관점에서 보면 티아노가 가장 코딩 하기가 어렵고, CNTK와 텐서플로는 많은 부분이 비슷하게 추상화 되어 있어서 코딩이 비슷하지만 가중치와 편향을 직접 정의하느냐의 여부에서 차이를 보였다. 그리고 각 프레임워크의 실행속도에 대한 평가는 '큰 차이는 없다'는 것이다. 텐서플로는 티아노에 비하여 속도가 느리다는 평가가 있어왔는데, 본 연구의 실험에 의하면, 비록 CNN 모형에 국한되었지만, 텐서플로가 아주 조금이지만 빠른 것으로 나타났다. CNTK의 경우에도, 비록 실험환경이 달랐지만, 실험환경의 차이에 의한 속도의 차이의 편차범위 이내에 있는 것으로 판단이 되었다. 본 연구에서는 세 종류의 딥러닝 프레임워크만을 살펴보았는데, 위키피디아에 따르면 딥러닝 프레임워크의 종류는 12가지가 있으며, 각 프레임워크의 특징을 15가지 속성으로 구분하여 차이를 특정하고 있다. 그 많은 속성 중에서 사용자의 입장에서 볼 때 중요한 속성은 어떤 언어(파이썬, C++, Java, 등)로 사용가능한지, 어떤 딥러닝 모형에 대한 라이브러리가 잘 구현되어 있는지 등일 것이다. 그리고 사용자가 대규모의 딥러닝 모형을 구축한다면, 다중 GPU 혹은 다중 서버를 지원하는지의 여부도 중요할 것이다. 또한 딥러닝 모형을 처음 학습하는 경우에는 사용설명서가 많은지 예제 프로그램이 많은지 여부도 중요한 기준이 될 것이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.