• Title/Summary/Keyword: requirements to QoS

Search Result 391, Processing Time 0.024 seconds

Minimum Cost Path for Private Network Design (개인통신망 설계를 위한 최소 비용 경로)

  • Choe, Hong-Sik;Lee, Ju-Yeong
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.26 no.11
    • /
    • pp.1373-1381
    • /
    • 1999
  • 이 논문에서는 통신망 설계 응용분야의 문제를 그래프 이론 문제로써 고려해 보았다. 개별 기업체가 서로 떨어진 두 곳을 연결하고자 할 때 공용통신망의 회선을 빌려 통신망을 구축하게 되는데 많은 경우 여러 종류의 회선들이 공급됨으로 어떤 회선을 선택하느냐의 문제가 생긴다. 일반적으로 빠른 회선(low delay)은 느린 회선(high delay)에 비해 비싸다. 그러나 서비스의 질(Quality of Service)이라는 요구사항이 종종 종단지연(end-to-end delay)시간에 의해 결정되므로, 무조건 낮은 가격의 회선만을 사용할 수는 없다. 결국 개별 기업체의 통신망을 위한 통로를 공용 통신망 위에 덮어씌워(overlaying) 구축하는 것의 여부는 두 개의 상반된 인자인 가격과 속도의 조절에 달려 있다. 따라서 일반적인 최소경로 찾기의 변형이라 할 수 있는 다음의 문제가 본 논문의 관심사이다. 두 개의 지점을 연결하는데 종단지연시간의 한계를 만족하면서 최소경비를 갖는 경로에 대한 해결을 위하여, 그래프 채색(coloring) 문제와 최단경로문제를 함께 포함하는 그래프 이론의 문제로 정형화시켜 살펴본다. 배낭문제로의 변환을 통해 이 문제는 {{{{NP-complete임을 증명하였고 {{{{O($\mid$E$\mid$D_0 )시간에 최적값을 주는 의사선형 알고리즘과O($\mid$E$\mid$)시간의 근사 알고리즘을 보였다. 특별한 경우에 대한 {{{{O($\mid$V$\mid$ + $\mid$E$\mid$)시간과 {{{{O($\mid$E$\mid$^2 + $\mid$E$\mid$$\mid$V$\mid$log$\mid$V$\mid$)시간 알고리즘을 보였으며 배낭 문제의 해결책과 유사한 그리디 휴리스틱(greedy heuristic) 알고리즘이 그물 구조(mesh) 그래프 상에서 좋은 결과를 보여주고 있음을 실험을 통해 확인해 보았다.Abstract This paper considers a graph-theoretic problem motivated by a telecommunication network optimization. When a private organization wishes to connect two sites by leasing physical lines from a public telecommunications network, it is often the cases that several categories of lines are available, at different costs. Typically a faster (low delay) lines costs more than a slower (high delay) line. However, low cost lines cannot be used exclusively because the Quality of Service (QoS) requirements often impose a bound on the end-to-end delay. Therefore, overlaying a path on the public network involves two diametrically opposing factors: cost and delay. The following variation of the standard shortest path problem is thus of interest: the shortest route between the two sites that meets a given bound on the end-to-end delay. For this problem we formulate a graph-theoretical problem that has both a shortest path component as well as coloring component. Interestingly, the problem could be formulated as a knapsack problem. We have shown that the general problem is NP-complete. The optimal polynomial-time algorithms for some special cases and one heuristic algorithm for the general problem are described.