• Title/Summary/Keyword: requirement verification

Search Result 243, Processing Time 0.025 seconds

Reliability evaluations of time of concentration using artificial neural network model -focusing on Oncheoncheon basin- (인공신경망 모형을 이용한 도달시간의 신뢰성 평가 -온천천 유역을 대상으로-)

  • Yoon, Euihyeok;Park, Jongbin;Lee, Jaehyuk;Shin, Hyunsuk
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.1
    • /
    • pp.71-80
    • /
    • 2018
  • For the stream management, time of concentration is one of the important factors. In particular, as the requirement about various application of the stream increased, accuracy assessment of concentration time in the stream as waterfront area is extremely important for securing evacuation at the flood. the past studies for the assessment of concentration time, however, were only performed on the single hydrological event in the complex basin of natural streams. The development of a assessment methods for the concentration time on the complex hydrological event in a single watershed of urban streams is insufficient. Therefore, we estimated the concentration time using the rainfall- runoff data for the past 10 years (2006~2015) for the Oncheon stream, the representative stream of the Busan, where frequent flood were taken place by heavy rains, in addition, reviewed the reliability using artificial neural network method based on Matlab. We classified a total of 254 rainfalls events based on over unrained 12 hours. Based on the classification, we estimated 6 parameters (total precipitation, total runoff, peak precipitation/ total precipitation, lag time, time of concentration) to utilize for the training and validation of artificial neural network model. Consequently, correlation of the parameter, which was utilized for the training and the input parameter for the predict and verification were 0.807 and 0.728, respectively. Based on the results, we predict that it can be utilized to estimate concentration time and analyze reliability of urban stream.

An SE-Based System Architecture Process for Submarine's Basic Design (잠수함 기본설계를 위한 SE 기반 시스템 아키텍처 프로세스)

  • Shin, Sung-Chul;Park, Jin-Won;Lee, Jae-Chon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.3
    • /
    • pp.91-99
    • /
    • 2019
  • Naval Ships have a number of requirements related to performance. Naval ship acquisition takes a long time from initial planning to delivery, and various products such as drawings and reports are created. In complex systems, such as naval ships, it is difficult to maintain the required traceability through these outputs. The basic design of the ship is an important step to determine the specifications, performance, and equipment of the ship. It is necessary to apply the systematic requirements management process. The basic design manages the requirements in accordance with the systems engineering-based technical review process, but the actual system architecture design process is not presented. The traceability between the requirements and the functional and physical architectures of components is unclear. This paper examined how to design the system architecture required for specification and system design, and the design results were verified using SE-based technical review process for requirements management. A step-by-step process for designing a submarine system architecture is presented and verified using the SE technical review. This facilitates the specification of the requirements and system architecture design, and supports traceability management and verification of the requirements. The proposed process can be applied in various ships including submarines.

A Study on Data Adjustment and Quality Enhancement Method for Public Administrative Dataset Records in the Transfer Process-Based on the Experiences of Datawarehouses' ETT (행정정보 데이터세트 기록 이관 시 데이터 보정 및 품질 개선 방법 연구 - 데이터웨어하우스 ETT 경험을 기반으로)

  • Yim, Jin-Hee;Cho, Eun-Hee
    • The Korean Journal of Archival Studies
    • /
    • no.25
    • /
    • pp.91-129
    • /
    • 2010
  • As it grows more heavily reliant on information system, researchers seek for various ways to manage and utilize of dataset records which is accumulated in public information system. It might be needed to adjust date and enhance the quality of public administrative dataset records during transferring to archive system or sharing server. The purpose of this paper is presenting data adjustment and quality enhancement methods for public administrative dataset records, and it refers to ETT procedure and method of construction of datawarehouses. It suggests seven typical examples and processing method of data adjustment and quality enhancement, which are (1) verification of quantity and data domain (2) code conversion for a consistent code value (3) making component with combinded information (4) making a decision of precision of date data (5) standardization of data (6) comment information about code value (7) capturing of metadata. It should be reviewed during dataset record transfer. This paper made Data adjustment and quality enhancement requirements for dataset record transfer, and it could be used as data quality requirement of administrative information system which produces dataset.

Derivation of Anti-Tamper System Requirements Based on CMVP Standard for Technology Protection of Weapon Systems (무기 시스템의 기술 보호를 위한 CMVP 표준 기반의 Anti-Tamper 시스템 요구사항 도출)

  • Lee, Min-Woo;Lee, Jae-Chon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.4
    • /
    • pp.470-478
    • /
    • 2019
  • As the growth of the domestic defense industry is remarkable regarding technology level and export size, technology protection is necessary. Particularly, there is a need to apply anti-tamper measures to prevent critical technologies from illegally being taken out of weapon systems. However, there is no security protection strategy and system built yet in ROK. Precedent studies discussed the trend analysis and technical research for specific protective techniques, and the application of anti-tamper using limited procedures was provided. Recently, methods of how to select the technology for protection were studied based on risk management. Nonetheless, these studies cannot be associated with the acquisition process for the whole life-cycle, having difficulty with actual development and evaluation of the weapon systems. The objective of our study is to derive the system requirements of the weapon system for which anti-tamper measures have been determined to apply. Specifically, requirements items suitable for the development of anti-tamper weapon systems were derived based on ISO/IEC 19790, the CMVP standard for the development and verification of cryptographic modules. Also, its utilization in technical reviews and test & evaluations was presented. The usefulness of the research results was confirmed through inductive inference and comparative evaluation. The result can be expected to play a role in initiating extensive activities needed for technology protection of the weapon systems.

A study on the Effect of Process, IT, and Organization Characteristics on Business Process Virtualizability (업무 환경의 디지털 전환에서 업무 특성, IT 특성, 조직 특성이 업무 프로세스 가상성에 미치는 영향 연구)

  • Yituo Feng;Sundong Kwon
    • Information Systems Review
    • /
    • v.24 no.4
    • /
    • pp.119-142
    • /
    • 2022
  • Organizations are attempting a digital transformation that converts physical business processing into virtual business processing. Through this digital transformation, organizations are overcoming time and space constraints and creating competitiveness. The digital transformation of this work environment has been accelerated as many organizations have implemented remote work due to the recent COVID-19 pandemic. This study focused on business process virtualizability, which is the result of the rapid digital transformation of the work environment. Business process virtualizability is the resulting quality, such as the suitability or excellence of business processing in a virtual environment. This research model is the effect of process, IT and organizational characteristics on business process virtualizability. As a result of the verification of people who have experienced remote work in a virtual environment, first, it was confirmed that, in terms of process characteristics, sensory requirements affect business process virtualizability, but relationship requirements, synchronism requirements, and identification and control requirements do not. Second, in terms of IT characteristics, it was confirmed that representation and reach affect business process virtualizability. Third, it was confirmed that, in terms of organizational characteristics, job autonomy affects business process virtualizability, but evaluation unfairness does not. This study found that representation and reach of IT had the most significant influence on business process virtualizability, job autonomy was next, and sensory requirements had the lowest influence. This presents practical implications for organizations to increase the success potential of business process virtualizability.

Large-Scale Current Source Development in Nuclear Power Plant (원전에 사용되는 직류전압제어 대전류원의 개발)

  • Jong-ho Kim;Gyu-shik Che
    • Journal of Advanced Navigation Technology
    • /
    • v.28 no.3
    • /
    • pp.348-355
    • /
    • 2024
  • A current source capable of stably supplying current as a measurement medium is required in order to measure and test important facilities that require large-scale measurement current, such as a control element drive mechanism control system(CEDMCS), in case of dismantling a nuclear power plant. However, it can provides only voltage power as a source, not current, although direct voltage controlled constant current source is essential to test major equipment. That kind of source is not available to supply stable constant current regardless of load variation. It is just voltage supplier. Developing current source is not easy other than voltage source. Very large-scale current source up to ampere class more than such ten times of normal current is inevitable to test above mentioned equipment. So, we developed large-scale current source which is controlled by input DC voltage and supplies constant stable current to object equipment according to this requirement. We measured and tested nuclear power plant equipment using given real site data for a long time and afforded long period load test, and then proved its validity and verification. The developed invetion will be used future installed important equipment measuring and testing.

Analysis of Environmental Design Data for Growing Pleurotus ervngii (큰 느타리버섯 재배사의 환경설계용 자료 분석)

  • Yoon, Yong-Cheol;Suh, Won-Myung;Lee, In-Bok
    • Journal of Bio-Environment Control
    • /
    • v.14 no.2
    • /
    • pp.95-105
    • /
    • 2005
  • This study was carried out to file up using effect and requirement of energy for environmental design data of Pleurotus eryngii growing houses. Heating and cooling Degree-Hour (D-H) were calculated and compared for. some Pleurotus eryngii growing houses of sandwich-panel (permanent) o. arch-roofed(simple) type structures modified and suggested through field survey and analysis. Also thermal resistance (R-value) was calculated for the heat insulating and covering materials of the permanent and simple-type, which were made of polyurethane or polystyrene panel and $7\~8$ layers heat conservation cover wall. The variations of heating and cooling D-H simulated for Jinju area was nearly linearly proportional to the setting inside temperatures. The variations of cooling D-H was much more sensitive than those of heating D-H. Therefore, it was expected that the variations of required energy in accordance with setting temperature or actual temperature maintained inside of the cultivation house could be estimated and also the estimated results of heating and cooling D-H could be effectively used far the verification of environmental simulation as well as for the calculation of required energy amounts. When the cultivation floor areas are all equal, panel type houses to be constructed by various combinations of materials were found to by far more effective than simple type pipe house in the aspect of energy conservation maintenance except some additional cost invested initially. And also the energy effectiveness of multi-span house compared to single span together with the prediction of energy requirement depending on the level insulated for the wall and roof area could be estimated. Additionally, structural as well as environmental optimizations are expected to be possible by calculating periodical and/or seasonal energy requirements for those various combinations of insulation level and different climate conditions, etc.

DEVELOPMENT OF A LYMAN-α IMAGING SOLAR TELESCOPE FOR THE SATELLITE (인공위성 탑재용 자외선 태양카메라(LIST) 개발)

  • Jang, M.;Oh, H.S.;Rim, C.S.;Park, J.S.;Kim, J.S.;Son, D.;Lee, H.S.;Kim, S.J.;Lee, D.H.;Kim, S.S.;Kim, K.H.
    • Journal of Astronomy and Space Sciences
    • /
    • v.22 no.3
    • /
    • pp.329-352
    • /
    • 2005
  • Long term observations of full-disk Lyman-o irradiance have been made by the instruments on various satellites. In addition, several sounding rockets dating back to the 1950s and up through the present have measured the $Lyman-{\alpha}$ irradiance. Previous full disk $Lyman-{\alpha}$ images of the sun have been very interesting and useful scientifically, but have been only five-minute 'snapshots' obtained on sounding rocket flights. All of these observations to date have been snapshots, with no time resolution to observe changes in the chromospheric structure as a result of the evolving magnetic field, and its effect on the Lyman-o intensity. The $Lyman-{\alpha}$ Imaging Solar Telescope(LIST) can provide a unique opportunity for the study of the sun in the $Lyman-{\alpha}$ region with the high time and spatial resolution for the first time. Up to the 2nd year development, the preliminary design of the optics, mechanical structure and electronics system has been completed. Also the mechanical structure analysis, thermal analysis were performed and the material for the structure was chosen as a result of these analyses. And the test plan and the verification matrix were decided. The operation systems, technical and scientific operation, were studied and finally decided. Those are the technical operation, mechanical working modes for the observation and safety, the scientific operation and the process of the acquired data. The basic techniques acquired through the development of satellite based solar telescope are essential for the construction of space environment forecast system in the future. The techniques which we developed through this study, like mechanical, optical and data processing techniques, could be applied extensively not only to the process of the future production of flight models of this kind, but also to the related industries. Also, we can utilize the scientific achievements which are obtained throughout the project And these can be utilized to build a high resolution photometric detectors for military and commercial purposes. It is also believed that we will be able to apply several acquired techniques for the development of the Korean satellite projects in the future.

Comparisons between the Two Dose Profiles Extracted from Leksell GammaPlan and Calculated by Variable Ellipsoid Modeling Technique (렉셀 감마플랜(LGP)에서 추출된 선량 분포와 가변 타원체 모형화기술(VEMT)에 의해 계산된 선량 분포 사이의 비교)

  • Hur, Beong Ik
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.1
    • /
    • pp.9-17
    • /
    • 2017
  • A high degree of precision and accuracy in Gamma Knife Radiosurgery(GKRS) is a fundamental requirement for therapeutical success. Elaborate radiation delivery and dose gradients with the steep fall-off of radiation are clinically applied thus necessitating a dedicated Quality Assurance(QA) program in order to guarantee dosimetric and geometric accuracy and reduce all the risk factors that can occur in GKRS. In this study, as a part of QA we verified the accuracy of single-shot dose profiles used in the algorithm of Gamma Knife Perfexion(PFX) treatment planning system employing Variable Ellipsoid Modeling Technique(VEMT). We evaluated the dose distributions of single-shots in a spherical ABC phantom with diameter 160 mm on Gamma Knife PFX. The single-shots were directed to the center of ABC phantom. Collimating configurations of 4, 8, and 16 mm sizes along x, y, and z axes were studied. Gamma Knife PFX treatment planning system being used in GKRS is called Leksell GammaPlan(LGP) ver 10.1.1. From the verification like this, the accuracy of GKRS will be doubled. Then the clinical application must be finally performed based on precision and accuracy of GKRS. Specifically the width at the 50% isodose level, that is, Full-Width-of-Half-Maximum(FWHM) was verified under such conditions that a patient's head is simulated as a sphere with diameter 160mm. All the data about dose profiles along x, y, and z axes predicted through VEMT were excellently consistent with dose profiles from LGP within specifications(${\leq}1mm$ at 50% isodose level) except for a little difference of FWHM and PENUMBRA(isodose level: 20%~80%) along z axis for 4 mm and 8mm collimating configurations. The maximum discrepancy of FWHM was less than 2.3% at all collimating configurations. The maximum discrepancy of PENUMBRA was given for the 8 mm collimator along z axis. The difference of FWHM and PENUMBRA in the dose distributions obtained with VEMT and LGP is too small to give the clinical significance in GKRS. The results of this study are considered as a reference for medical physicists involved in GKRS in the whole world. Therefore we can work to confirm the validity of dose distributions for all collimating configurations determined through the regular preventative maintenance program using the independent verification method VEMT for the results of LGP and clinically assure the perfect treatment for patients of GKRS. Thus the use of VEMT is expected that it will be a part of QA that can verify and operate the system safely.

Verification of Indicator Rotation Correction Function of a Treatment Planning Program for Stereotactic Radiosurgery (방사선수술치료계획 프로그램의 지시자 회전 오차 교정 기능 점검)

  • Chung, Hyun-Tai;Lee, Re-Na
    • Journal of Radiation Protection and Research
    • /
    • v.33 no.2
    • /
    • pp.47-51
    • /
    • 2008
  • Objective: This study analyzed errors due to rotation or tilt of the magnetic resonance (MR) imaging indicator during image acquisition for a stereotactic radiosurgery. The error correction procedure of a commercially available stereotactic neurosurgery treatment planning program has been verified. Materials and Methods: Software virtual phantoms were built with stereotactic images generated by a commercial programming language, Interactive Data Language (version 5.5). The thickness of an image slice was 0.5 mm, pixel size was $0.5{\times}0.5mm$, field of view was 256 mm, and image resolution was $512{\times}512$. The images were generated under the DICOM 3.0 standard in order to be used with Leksell GammaPlan$^{(R)}$. For the verification of the rotation error correction function of Leksell GammaPlan$^{(R)}$, 45 measurement points were arranged in five axial planes. On each axial plane, there were nine measurement points along a square of length 100 mm. The center of the square was located on the z-axis and a measurement point was on the z-axis, too. Five axial planes were placed at z=-50.0, -30.0, 0.0, 30.0, 50.0 mm, respectively. The virtual phantom was rotated by $3^{\circ}$ around one of x, y, and z-axis. It was also rotated by $3^{\circ}$ around two axes of x, y, and z-axis, and rotated by $3^{\circ}$ along all three axes. The errors in the position of rotated measurement points were measured with Leksell GammaPlan$^{(R)}$ and the correction function was verified. Results: The image registration errors of the virtual phantom images was $0.1{\pm}0.1mm$ and it was within the requirement of stereotactic images. The maximum theoretical errors in position of measurement points were 2.6 mm for a rotation around one axis, 3.7 mm for a rotation around two axes, and 4.5 mm for a rotation around three axes. The measured errors in position was $0.1{\pm}0.1mm$ for a rotation around single axis, $0.2{\pm}0.2mm$ for double and triple axes. These small errors verified that the rotation error correction function of Leksell GammaPlan$^{(R)}$ is working fine. Conclusion: A virtual phantom was built to verify software functions of stereotactic neurosurgery treatment planning program. The error correction function of a commercial treatment planning program worked within nominal error range. The virtual phantom of this study can be applied in many other fields to verify various functions of treatment planning programs.