• Title/Summary/Keyword: requirement model

Search Result 1,441, Processing Time 0.029 seconds

Systematic approach process for Integrated Validation & verification Plan (통합평가 계획수립을 위한 시스템적 접근 프로세스)

  • Kim, Jin-Hun;Sin, Gwang-Bok;Yu, Won-Hui;Gu, Dong-Hui
    • 시스템엔지니어링워크숍
    • /
    • s.1
    • /
    • pp.9-14
    • /
    • 2003
  • The paper aims at presenting a systematic approach process and a method of requirement validation and system verification. Validation is applied during concept development to ensure conceptual validity, requirements validity, and design validity. Verification work is applied subsequent to the design work on test articles and early production items to produce evidence that the design solutions do, in fact, satisfy th requirements. In this paper, we present a requirements validation model and a system verification model. This models are applied to the development of TTX(Tilting Train Express)system with systems engineering tool, CORE.

  • PDF

Timer Selection for Satisfying the Maximum Allowable Delay using Performance Model of Profibus Token Passing Protocol (Profibus 성능 모델에서 최대 허용 전송 지연을 만족할 수 있는 타이머 선정에 관한 연구)

  • Kim, Hyun-Hee;Lee, Kyung-Chang;Lee, Seok
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.181-184
    • /
    • 2003
  • Recently, the fieldbus becomes an indispensable component for many automated systems. In the fieldbus system, realtime data containing sensor values and control commands has a tendency to rapidly lose its value as time elapses after its creation. In order to deliver these data in time, the fieldbus network should be designed to have short delay compared to the maximum allowable delay. Because the communication delay is affected by performance parameters such as target rotation timer of token passing protocol, it is necessary to select proper parameter settings to satisfy the real-time requirement for communication delay. This paper presents the timer selection method for Profibus token passing networks using genetic algorithm (GA) to meet the delay requirements.

  • PDF

Determination of Optimal Build Orientation Based on Satisfactory Degree Theory for RPT

  • Zhao, Jibin;Liu, Weijun;Wu, Jianhuang
    • International Journal of CAD/CAM
    • /
    • v.6 no.1
    • /
    • pp.51-58
    • /
    • 2006
  • In rapid prototyping, the optimal part orientation during fabrication is critical as it can improve part accuracy, minimize the requirement for supports and reduce the production time. Through investigating the geometric issues of STL model and process planning of RPM, This paper establishes optimizing model based on the considerations of staircase effect, support area and production time. The general satisfactory degree function is constructed employing the multi-objective optimization theory based on the general satisfactory degree principle. The best part-building orientation is obtained by solving the function employing generic algorithm. Experiment shows that the methods can effective resolve the part-building orientation in RP.

Combining Empirical Feature Map and Conjugate Least Squares Support Vector Machine for Real Time Image Recognition : Research with Jade Solution Company

  • Kim, Byung Joo
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.9 no.1
    • /
    • pp.9-17
    • /
    • 2017
  • This paper describes a process of developing commercial real time image recognition system with company. In this paper we will make a system that is combining an empirical kernel map method and conjugate least squares support vector machine in order to represent images in a low-dimensional subspace for real time image recognition. In the traditional approach calculating these eigenspace models, known as traditional PCA method, model must capture all the images needed to build the internal representation. Updating of the existing eigenspace is only possible when all the images must be kept in order to update the eigenspace, requiring a lot of storage capability. Proposed method allows discarding the acquired images immediately after the update. By experimental results we can show that empirical kernel map has similar accuracy compare to traditional batch way eigenspace method and more efficient in memory requirement than traditional one. This experimental result shows that proposed model is suitable for commercial real time image recognition system.

FMEA for Interaction Failures (상호작용기반 FMEA 실행)

  • Lee, D.J.;Jang, J.S.
    • Journal of Applied Reliability
    • /
    • v.17 no.1
    • /
    • pp.28-37
    • /
    • 2017
  • Purpose: This paper proposes a procedure that may infer and identify interaction failures in a module. Methods: In design FMEA, we defined an interaction model between components and proposed a method for selecting a single component by using the standard specification classification table and four methods for choosing the related components. We also introduced the function tree for function and requirement characteristic analysis and proposed utilization of standard stress lists and 1st and 2nd stress analysis tables to determine the effect the stress analysis has on interactions. Finally, the interaction mechanism diagram was proposed and used to infer the failure mechanism. Process FMEA also established procedures in a similar way. Results: We established a procedure for predicting the failure mode due to interaction between components based on Company A's multi-step FMEA procedure. Conclusion: By applying the proposed interaction FMEA procedure to the development model, we were able to confirm the effect of the new derivation on the failure mode of interaction, which was not predicted by the existing FMEA.

Evaluation of Cluster-Based System for the OLTP Application

  • Hahn, Woo-Jong;Yoon, Suk-Han;Lee, Kang-Woo;Dubois, Michel
    • ETRI Journal
    • /
    • v.20 no.4
    • /
    • pp.301-326
    • /
    • 1998
  • In this paper, we have modeled and evaluated a new parallel processing system called Scalable Parallel computer Architecture based on Xbar (SPAX) for commercial applications. SMP systems are widely used as servers for commercial applications; however, they have very limited scalability. SPAX cost-effectively overcomes the SMP limitation by providing both scalability and application portability. To investigate whether the new architecture satisfies the requirements of commercial applications, we have built a system model and a workload model. The results of the simulation study show that the I/O subsystem becomes the major bottleneck. We found that SPAX can still meet the I/O requirement of the OLTP workload as it supports flexible I/O subsystem. We also investigated what will be the next most important bottleneck in SPAX and how to remove it. We found that the newly developed system network called Xcent-Net will not be a bottleneck in the I/O data path. We also show the optimal configuration that is to be considered for system tuning.

  • PDF

Robust Controller Design for the Nuclear Reactor Power Control System

  • Lee, Yoon-Joon;Park, Jung-In
    • Nuclear Engineering and Technology
    • /
    • v.29 no.4
    • /
    • pp.280-290
    • /
    • 1997
  • The robust controller for the nuclear reactor power control system is designed. The nuclear reactor is modeled by use of the point kinetics equations and the singly lumped energy balance equations, Since the model is not exact, the controller which can make the actual system robust is necessary. The perturbed plant is investigated by employing the uncertainties of the initial power level and the physical properties, and by introducing the delay into the modeled plant The overall system is configured into the two port model and the H$\infty$ controller is designed. In designing the H$\infty$ controller, two factors of the loop shaping and the permissible magnitude of control input are taken into account The designed controller provides the sufficient margins for the robustness, and the transients of the system output power and the control input satisfy their associated requirement.

  • PDF

Efficient Equivalent Fault Collapsing Algorithm for Transistor Short Fault Testing in CMOS VLSI (CMOS VLSI에서 트랜지스터 합선 고장을 위한 효율적인 등가 고장 중첩 알고리즘)

  • 배성환
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.12
    • /
    • pp.63-71
    • /
    • 2003
  • IDDQ testing is indispensable in improving Duality and reliability of CMOS VLSI circuits. But the major problem of IDDQ testing is slow testing speed due to time-consuming IDDQ current measurement. So one requirement is to reduce the number of target faults or to make the test sets compact in fault model. In this paper, we consider equivalent fault collapsing for transistor short faults, a fault model often used in IDDQ testing and propose an efficient algorithm for reducing the number of faults that need to be considered by equivalent fault collapsing. Experimental results for ISCAS benchmark circuits show the effectiveness of the proposed method.

Development of a Cutting Simulation System using Octree Algorithm (옥트리 알고리즘을 이용한 절삭 시뮬레이션 시스템의 개발)

  • Kim Y-H.;Ko S.-L.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.10 no.2
    • /
    • pp.107-113
    • /
    • 2005
  • Octree-based algorithm is developed for machining simulation. Most of commercial machining simulators are based on Z map model, which have several limitations to get a high precision in 5 axis machining simulation. Octree representation is three dimensional decomposition method. So it is expected that these limitations be overcome by using octree based algorithm. By using the octree model, storage requirement is reduced. And also recursive subdivision was processed in the boundaries, which reduces useless computation. The supersampling method is the most common form of the anti-aliasing and usually used with polygon mesh rendering in computer graphics. Supersampling technique is applied for advancing its efficiency of the octree algorithm.

Characteristics Improvement of Hydraulic Servosystem by Using Generalized Minimum Variance Adaptive Control (일반화최소분산 적응제어를 이용한 유압 서보계의 특성개선에 관한 연구)

  • 박용호;김기홍;이진걸
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.3
    • /
    • pp.388-394
    • /
    • 2003
  • Hydraulic system is difficult to obtain a suitable performance due to the nonlinearity load pressure change and system parameter variation. The requirement of control a1gorithm has been complex in order to satisfy the performance. The adaptive control is a control method which is suggested to achieve the control object under the plant characteristics change. In spite of the case that plant characteristics and the degree of variation are difficult to grasp. the adaptive control could keep the characteristics of closed-loop system generally. In this study. a method of combined generalized minimum variance adaptive control (GMVAC) and output error feedback is proposed, in order to solve the problem of non-minimum phase of plant and the vibration and overshoot in initial response. The control performance according to the variation of characteristics of plant is evaluated by changing the supply pressure. The experimental results show the effectiveness of the proposed scheme.