• Title/Summary/Keyword: required pressure

Search Result 2,293, Processing Time 0.03 seconds

A Design Procedure for a Multi-Stage Axial Compressor Using the Stage-Stacking Method (단축적방법을 이용한 다단 축류압축기의 설계)

  • 강동진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.6
    • /
    • pp.1598-1603
    • /
    • 1994
  • A preliminary design procedure for a multi-stage axial compressor is developed, which is based on the stage-stacking method. It determines the flow coefficient which gives rise to the design conditions required such as pressure ratio, mass flow rate and rotational speed for a given specific mass flow rate at inlet to a compressor. With this flow coefficient, blade radii, every stage and compressor performance characterics such as stage pressure ratio, adiabatic efficiency etc. are calculated by stacking each stage performance characteristics. It is shown that there is an optimum number of stage which results in the maximum of compressor overall efficiency for a given specific mass flow rate at inlet to a compressor. A test design was tried for three different geometric design constraints, and comparison with a previous study shows that present procedure could be used reliably in determining the number of compressor stage in preliminary design stage.

Flow Analysis and Measurement of Pressure Distribution along Inclined Circular Valve Reeds of Reciprocating Compressor (왕복동형 압축기의 경사진 원판형 밸브리드에 대한 압력분포 측정 및 유동해석)

  • Yoon, Jung;Park, Jong-Ho;Kim, Tae-Min;Kim, Kyung-Chun
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1942-1947
    • /
    • 2003
  • The valve is the key part which governs the efficiency, noise and reliability of the compressor, so the development of analytical model about valve performance is necessary. As the valve leed is opened and closed by pressure pulsation, the flow characteristic of the refrigerant passing the valve is very important. In the present study, a circular disk with inclination is assumed to be the valve reed of a reciprocating compressor and numerical analysis of three dimensional velocity fields are perfomed for the radial flow through the valve model. The effective flow and force area which are required to predict the efficiency of the valve are measured and compared with the numerical analysis in this research.

  • PDF

NUMERICAL ANALYSIS OF NON-EQUILIBRIUM HYDRATE PELLET DECOMPOSITION (하이드레이트 펠릿의 비평형 분해과정 수치해석)

  • Kang, Jung-Ho;Nam, Jin-Hyun;Kim, Charn-Jung;Song, Myung-Ho
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.268-275
    • /
    • 2008
  • The prediction of hydrate pellet decomposition characteristics is required to design the regasification process of GTS (gas to solid) technology, which is considered as an economic alternative for LNG technology to transport natural gas produced from small and stranded gas wells. Mathematical model based on the conservation principles, the phase equilibrium relation, equation of gas state and phase change kinetics was set up and numerical solution procedure employing volume averaged fixed grid formulation and extended enthalpy method are implemented. Initially, porous methane hydrate pellet is at uniform temperature and pressure within hydrate stable region. The pressure starts to decrease with a fixed rate down to the final pressure and is kept constant afterwards while the bounding surface of pellet is heated by convection. The predicted convective heat and mass transfer accompanied by the decomposed gas flow through hydrate/ice solid matrix is reported focused on the comparison of spherical and cylindrical pellets having the same effective radius.

  • PDF

Analysis of the thermoelastic begavior on the contact joint of compound cylinder (원통결합부의 열특성 해석 (제1보) -주축베어링 내륜계의 수치해석을 중심으로-)

  • 김선민;박기환;이선규
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.629-634
    • /
    • 1996
  • Heat generation in machine operating condition makes thermal deformation and thermalstress in the structure, which results in the change the contact characteristics of machine joint such s change of shrinkage fit, contact heat conductance and contact pressure. As the change of contact pressure is related to variation of static, dynamic and thermalcharacteristics, the prediction of transient contact perssure is strongly required. This paper presents some analytical results which will be effective to predict static and dynamic characteristics of the compound cylindrical structure.

  • PDF

A Study on the Reduction of Pulsations in a 3/4 Open Jet Wind Tunnel (3/4 Open Jet 실차풍동에서의 Pulsation 감소에 관한 연구)

  • Kim Moo-Sang;Kee Jung-Do;Lee Jung-Ho;Jang Jin-Hyuk
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.839-842
    • /
    • 2002
  • Some open jet wind tunnels have been operating under limitations due to large pressure fluctuations at some wind tunnel speeds. The Hyundai Aero-acoustic full scale Wind Tunnel (HAWT), which was completed in 1999, shows that most of the specifications were fulfilled but wind tunnel pulsations at some wind speeds were observed. Hyundai Motor Company started the wind tunnel modification in order to solve this problem in 2001. After the modification work the amplitude of pressure fluctuation was reduced and below required level over full wind speed range. Aero-acoustic performance, e.g. background noise, as well as aerodynamic performance were improved after this work.

  • PDF

Study on the Pressure Drop Characteristics of Liquid Flow in Open Microchannels with the Countercurrent Vapor Flow (기체 대향류가 존재하는 미소 액체 개수로 유동의 압력강하 특성에 관한 이론 및 실험적 연구)

  • Kim Sung Jin;Nam Myeong Ryong;Seo Joung Ki
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.6 s.237
    • /
    • pp.747-754
    • /
    • 2005
  • Because the liquid-vapor interfacial shear stress affects seriously the liquid flow and the maximum heat transport rate of the grooved wick heat pipe, an accurate modeling for the pressure drop characteristics of the liquid flow is required. A novel method for calculating the liquid pressure drop and the velocity profile of an open channel flow in a microchannel with an arbitrary cross-section is suggested and validated by experiments. An experimental apparatus for the Poiseuille number of the liquid flow in open rectangular microchannels with the hydraulic diameters of 0.40mm, 0.43mm, 0.48mm is used in order to reproduce real situations in the grooved wick heat pipe. Analytic results from the suggested method are compared with the experimental data and they are in a close agreement with each other.

접촉결합부를 갖는 원통구조물의 열적,동적 특성 연구

  • 김선민;이선규
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.244-249
    • /
    • 1997
  • Internal and external heat sources will cause to deform to machine elements in the contact joint of structure,which results in the change of contact pressure distribution different from initial assembly. Heat induced variations of contact pressure will change the static and dynamic properties such as contact stiffness,damping as well as contact heat conduction in the structure. In order to design and control the intelligent machine tool operating in variant conditions more sophisticatedly, the good prediction for the changes of prescribed propeties are strongly required especially in the contact elements adjacent to the rotational or linear bearing This paper presents some computational and experimental results in regard to static and dynamic characteristics of the press-fitted bush and shaft assembly which is a model of the bearing innerrace and shaft assembly. In the condition of heat generation on the outer surface of the bush,the effects of changes in the negative clearance and the heat flux on pressure distribution and dynamic properties are investigated. Results of this study show that the edge effect of the bush and the initial clearance have effects on the transient dynamic characteristics significantiy.

Thrust augmentation through after-burning in scramjet nozzles

  • Candon, Michael J.;Ogawa, Hideaki;Dorrington, Graham E.
    • Advances in aircraft and spacecraft science
    • /
    • v.2 no.2
    • /
    • pp.183-198
    • /
    • 2015
  • Scramjets are a class of hypersonic airbreathing engine that are associated with realizing the technology required for economical, reliable access-to-space and high-speed atmospheric transport. After-burning augments the thrust produced by the scramjet nozzle and creates a more robust nozzle design. This paper presents a numerical study of three parameters and the effect that they have on thrust augmentation. These parameters include the injection pressure, injection angle and streamwise injection position. It is shown that significant levels of thrust augmentation are produced based upon contributions from increased pressure, mass flow and energy in the nozzle. Further understanding of the phenomenon by which thrust augmentation is being produced is provided in the form of a force contribution breakdown, analysis of the nozzle flowfields and finally the analysis of the surface pressure and shear stress distributions acting upon the nozzle wall.

An Experimental Study on the Measurement Error in the Performance Testing of Air Conditioners Using a Psychrometric Calorimeter (건습구식 칼로리미터를 이용한 공기조화기 성능측정상의 계측오차에 대한 실험적 연구)

  • 김봉훈
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.5
    • /
    • pp.415-423
    • /
    • 2002
  • An experimental study using a psychrometric calorimeter was conducted to investigate the temperature and pressure mea surement errors permitted for determining cooling capacity of an air conditioner. First, the instrument calibration was made in accordance with the related test methods and guidelines in order to accurately evaluate basic performance (cooling capacity and airs flow rate). Secondly, a parametric study was performed to examine the effect of measurement error involved if temperature and pressure measuring instruments on the cooling capacity calculation. From the results, it was found that the degree of accuracy for both temperature and pressure measurements played an important role on the error occurring in the determination of cooling capacity and needed to be maintained within a certain value to guarantee required accuracy of cooling capacity.

Evaluation of Engine Lubrication System for Adapting Variable Cam Timing System (VCT탑재를 위한 엔진윤활시스템 평가)

  • Yun Jeong-Eui
    • Tribology and Lubricants
    • /
    • v.22 no.1
    • /
    • pp.14-19
    • /
    • 2006
  • VCT(Variable Cam Timing) system is one of very useful engine components to improve fuel economy and overcome emission regulation etc. In order to adapt the VCT to a base engine, many design mod ifications in the mechanical and lubrication fields are required. Especially, because the VCT performance itself depends on supplied oil flow rate and pressure, it is very important to evaluate the engine lubrication system in a viewpoint of supplied oil flow rate and pressure. In this paper, unsteady transient flow network analysis on the engine oil circuit system was carried out to do this.