• Title/Summary/Keyword: reputation rating mechanism

Search Result 3, Processing Time 0.015 seconds

A Collaborative Reputation System for e-Learning Content (협업적 이러닝 콘텐츠 평판시스템 연구)

  • Cho, Jinhyung;Kang, Hwan Soo
    • Journal of Digital Convergence
    • /
    • v.11 no.2
    • /
    • pp.235-242
    • /
    • 2013
  • Reputation systems aggregate users' feedback after the completion of a transaction and compute the "reputation" of products, services, or providers, which can assist other users in decision-making in the future. With the rapid growth of online e-Learning content providing services, a suitable reputation system for more credible e-Learning content delivery has become important and is essential if educational content providers are to remain competitive. Most existing reputation systems focus on generating ratings only for user reputation; they fail to consider the reputations of products or services(item reputation). However, it is essential for B2C e-Learning services to have a reliable reputation rating mechanism for items since they offer guidance for decision-making by presenting the ranks or ratings of e-Learning content items. To overcome this problem, we propose a novel collaborative filtering based reputation rating method. Collaborative filtering, one of the most successful recommendation methods, can be used to improve a reputation system. In this method, dual information sources are formed with groups of co-oriented users and expert users and to adapt it to the reputation rating mechanism. We have evaluated its performance experimentally by comparing various reputation systems.

An Incentive Mechanism Design for Trusted Data Management on Internet of Vehicle with Decentralized Approach (분산형 접근 방식을 적용한 차량 인터넷에서 신뢰할수 있는 데이터 관리를 위한 인센티브 메커니즘 설계)

  • Firdaus, Muhammad;Rhee, Kyung-Hyune
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.31 no.5
    • /
    • pp.889-899
    • /
    • 2021
  • This paper proposes a reliable data sharing scheme on the internet of vehicles (IoV) by utilizing blockchain technology for constructing a decentralized system approach. In our model, to maintain the credibility of the information messages sent by the vehicles to the system, we propose a reputation rating mechanism, in which neighboring vehicles validate every received information message. Furthermore, we incorporate an incentive mechanism based on smart contracts, so that vehicles will get certain rewards from the system when they share correct traffic information messages. We simulated the IoV network using a discrete event simulator to analyze network performance, whereas the incentive model is designed by leveraging the smart contract available in the Ethereum platform.

Conflict of Interests and Analysts' Forecast (이해상충과 애널리스트 예측)

  • Park, Chang-Gyun;Youn, Taehoon
    • KDI Journal of Economic Policy
    • /
    • v.31 no.1
    • /
    • pp.239-276
    • /
    • 2009
  • The paper investigates the possible relationship between earnings prediction by security analysts and special ownership ties that link security companies those analysts belong to and firms under analysis. "Security analysts" are known best for their role as information producers in stock markets where imperfect information is prevalent and transaction costs are high. In such a market, changes in the fundamental value of a company are not spontaneously reflected in the stock price, and the security analysts actively produce and distribute the relevant information crucial for the price mechanism to operate efficiently. Therefore, securing the fairness and accuracy of information they provide is very important for efficiencyof resource allocation as well as protection of investors who are excluded from the special relationship. Evidence of systematic distortion of information by the special tie naturally calls for regulatory intervention, if found. However, one cannot presuppose the existence of distorted information based on the common ownership between the appraiser and the appraisee. Reputation effect is especially cherished by security firms and among analysts as indispensable intangible asset in the industry, and the incentive to maintain good reputation by providing accurate earnings prediction may overweigh the incentive to offer favorable rating or stock recommendation for the firms that are affiliated by common ownership. This study shares the theme of existing literature concerning the effect of conflict of interests on the accuracy of analyst's predictions. This study, however, focuses on the potential conflict of interest situation that may originate from the Korea-specific ownership structure of large conglomerates. Utilizing an extensive database of analysts' reports provided by WiseFn(R) in Korea, we perform empirical analysis of potential relationship between earnings prediction and common ownership. We first analyzed the prediction bias index which tells how optimistic or friendly the analyst's prediction is compared to the realized earnings. It is shown that there exists no statistically significant relationship between the prediction bias and common ownership. This is a rather surprising result since it is observed that the frequency of positive prediction bias is higher with such ownership tie. Next, we analyzed the prediction accuracy index which shows how accurate the analyst's prediction is compared to the realized earnings regardless of its sign. It is also concluded that there is no significant association between the accuracy ofearnings prediction and special relationship. We interpret the results implying that market discipline based on reputation effect is working in Korean stock market in the sense that security companies do not seem to be influenced by an incentive to offer distorted information on affiliated firms. While many of the existing studies confirm the relationship between the ability of the analystand the accuracy of the analyst's prediction, these factors cannot be controlled in the above analysis due to the lack of relevant data. As an indirect way to examine the possibility that such relationship might have distorted the result, we perform an additional but identical analysis based on a sub-sample consisting only of reports by best analysts. The result also confirms the earlier conclusion that the common ownership structure does not affect the accuracy and bias of earnings prediction by the analyst.

  • PDF