• Title/Summary/Keyword: reproductive developmental toxicity

Search Result 74, Processing Time 0.022 seconds

Effect of Methanol on Cultured Neuronal and Glial Cells on Rat Hippocampus (Methanol이 배양된 흰쥐 해마의 신경세포 및 신경교 세포의 성장에 미치는 영향)

  • 이정임;조병채;배영숙;이경은
    • Toxicological Research
    • /
    • v.12 no.2
    • /
    • pp.203-211
    • /
    • 1996
  • Methanol has been widely used as an industrial solvent and environmental exposure to methanol would be expected to be increasing. In humans, methanol causes metabolic acidosis and damage to ocular system, and can lead to death in severe and untreated case. Clinical symptoms are attributed to accumulation of forrnic acid which is a metabolic product of methanol. In humans and primates, formic acid is accumulated after methanol intake but not in rodents due to the rapid metabolism of methanol. Neverthless, the developmental and reproductive toxicity were reported in rodents. Previous reports showed that perinatal exposure to ethanol produces a variety of damage in human central nervous system by direct neurotoxicity. This suggests that the mechanism of toxic symptoms by methanol in rodents might mimic that of ethanol in human. In the present study I hypothesized that methanol can also induce toxicity in neuronal cells. For the study, primary culture of rat hippocampal neurons and glias were empolyed. Hippocampal cells were prepared from the embryonic day-17 fetuses and maintained up to 7 days. Effect of methanol (10, 100, 500 and 1000 mM) on neurite outgrowth and cell viability was investigated at 0, 18 and 24 hours following methanol treatment. To study the changes in proliferation of glial cells, protein content was measured at 7 days. Neuronal cell viability in culture was not altered during 0-24 hours after methanol treatment. 10 and 100 mM methanol treatment significantly enhanced neurite outgrowth between 18-24 hours. 7-day exposure to 10 or 100 mM methanol significantly increased protein contents but that to 1000 mM methanol decreased in culture. In conclusion, methanol may have a variety of effects on growing and differentiation of neurons and glial cells in hippocampus. Treatment with low concentration of methanol caused that neurite outgrowth was enhanced during 18-24 hours and the numbers of glial cell were increased for 7 days. High concentration of methanol brought about decreased protein contents. At present, the mechanism responsible for the methanol- induced enhancement of neurite outgrowth is not clear. Further studies are required to delineate the mechanism possibly by employing molecular biological techniques.

  • PDF

Risk Assessment of Triclosan, a Cosmetic Preservative

  • Lee, Jung Dae;Lee, Joo Young;Kwack, Seung Jun;Shin, Chan Young;Jang, Hyun-Jun;Kim, Hyang Yeon;Kim, Min Kook;Seo, Dong-Wan;Lee, Byung-Mu;Kim, Kyu-Bong
    • Toxicological Research
    • /
    • v.35 no.2
    • /
    • pp.137-154
    • /
    • 2019
  • Triclosan (TCS) is an antimicrobial compound used in consumer products. The purpose of current study was to examine toxicology and risk assessment of TCS based on available data. Acute toxicities of oral, transdermal and inhalation routes were low, and phototoxicity and neurotoxicity were not observed. Topical treatment of TCS to animal caused mild irritation. TCS did not induce reproductive and developmental toxicity in rodents. In addition, genotoxicity was not considered based on in vitro and in vivo tests of TCS. It is not classified as a carcinogen in international authorities such as International Agency for Research on Cancer (IARC). No-observed-adverse-effect level (NOAEL) was determined 12 mg/kg bw/day for TCS, based on haematoxicity and reduction of absolute and relative spleen weights in a 104-week oral toxicity study in rats. Percutaneous absorption rate was set as 14%, which was human skin absorption study reported by National Industrial Chemicals Notification and Assessment Scheme (NICNAS) (2009). The systemic exposure dosage (SED) of TCS has been derived by two scenarios depending on the cosmetics usage of Koreans. The first scenario is the combined use of representative cosmetics and oral care products. The second scenario is the combined use of rinse-off products of cleansing, deodorants, coloring products, and oral care products. SEDs have been calculated as 0.14337 mg/kg bw/day for the first scenario and 0.04733 mg/kg bw/day for the second scenario. As a result, margin of safety (MOS) for the first and second scenarios was estimated to 84 and 253.5, respectively. Based on these results, exposure of TCS contained in rinse-off products, deodorants, and coloring products would not pose a significant health risk when it is used up to 0.3%.

Toxicological Effect of Bojungiggitang and Gwibitang (Herbal prescription) in the Pregnant Rat and Fetuses -Focusing on Reproductive and developmental Toxicity- (보중익기탕과 귀비탕 투여가 임신랫드의 모체 및 태자에 미치는 연구)

  • Han, Yong-Joo;Shin, Heon-Tae;Lee, Sun-Dong
    • Journal of Society of Preventive Korean Medicine
    • /
    • v.14 no.2
    • /
    • pp.91-104
    • /
    • 2010
  • The experiments were undertaken to evaluate the effects of herbal medicine, Bojungiggitang and Gwibitang in pregnant rats and their fetuses. Female Sprague-Dawley rats were orally administered with the Bojungiggitang and Gwibitang at dose of 5ml/kg/day for 20 days. Pregnant rats were sacrificed at 20th day of gestation, and the internal and reproductive organs. Approximately live fetuses in the 20th day of gestation were randomly selected and fixed in 95% ethanol. To observe skeletal malformations, fetuses were stained with alcian blue and alizarin red S. Maternal body weights of Bojungiggitang and Gwibitang treated group has a tendency to increase compared to that of control group. There were no significant differences in internal and reproductive organs. There were no significant changes between two groups in blood chemistry and hematological values. There were no significant changes in number of corpus luteum, implantation and live fetuses. But Bojungiggitang and Gwibitang administered group showed higher implantation rate than the control group. Also, Bojungiggitang and Gwibitang administered groups showed lower early resorption rate than the control group. And Gwibitang had the higher value in all the other groups in all items. From the sex ratio, the number of females were larger than the number of males in the control group, and more males than females in Gwibitang administered group. Neonatal body weight and the number of fetus of Bojungiggitang and Gwibitang group were higher than that of control group. The fetuses of dams treated with Bojungiggitang and Gwibitang did not show external malformation. Vertebral and sternal variations were observed in Bojungiggitang and Gwibitang administered group compared to the control group. Those variations were insignificant. There were no significant changes in number of ribs, cervical, thoracic, lumbar, sacral and caudal vertebras. From these results, it can be concluded that Bojungiggitang and Gwibitang showed no toxic effects on maternal body weight and the number of live fetuses. There were no significant changes in organ weight, hematological data, and reproductive organs. Although skeletal variations were shown in vertebra and sternum, Bojungiggitang, Gwibitang were shown insignificant changes in bone malformation.

Okadaic Acid Group Toxins: Toxicity, Exposure Routes, and Global Safety Management (오카다익산 군 독소: 독성, 분석법 및 관리 동향)

  • Kyoungah Lee;Namhyun Kim;Jang Kyun Kim;Youn-Jung Kim;Jung Suk Lee;Young-Seok Han
    • Journal of Food Hygiene and Safety
    • /
    • v.38 no.6
    • /
    • pp.409-419
    • /
    • 2023
  • Okadaic acid (OA) group toxins, including OA and its analogs, such as dinophysis toxins (DTXs), have been reported to cause diarrheal shellfish poisoning (DSP). These toxins are primarily produced by dinoflagellates and are accumulated in bivalves. Recently, the presence of Dinophysis sp., a causative alga of DSP, has been reported along the coasts of Korea, posing a potential risk of contamination to domestic seafood and exerting an impact on both the production and consumption of marine products. Accordingly, the European Food Safety Authority (EFSA) and the World Health Organization (WHO) have established standards for the permissible levels of OA group toxins in marine products for safety management. Additionally, in line with international initiatives, the domestic inclusion and regulation of DTX2 among the substances falling under the purview of management outlined by the 2022 diarrheal shellfish toxin standard have been implemented. In this study, we reviewed the physicochemical properties of OA group toxins, their various exposure routes (such as acute toxicity, genotoxicity, reproductive and developmental toxicity), and the relative toxicity factors associated with these toxins. We also performed a comparative assessment of the methods employed for toxin analysis across different countries. Furthermore, we aimed to conduct a broad review of human exposure cases and assess the international guideline for risk management of OA group toxins.

Toxic Effects of Ethylene Glycol on Mammalian Embryo Survivability (Ethylene Glycol이 포유류 초기배자의 생존성에 미치는 독성 효과 분석)

  • Kim, Hyun;Yu, Dae Jung;Choe, Changyong;Seong, Hwan-Hoo
    • Reproductive and Developmental Biology
    • /
    • v.39 no.3
    • /
    • pp.77-81
    • /
    • 2015
  • This study was carried out to evaluate the effects of embryonic stage and toxicities of cryoprotectant on the rates of survival and development of the cryopreserved mouse early embryo and finally to establish the cryopreservation method of surplus embryos obtained during assisted reproductive technology. Toxicities of two cryoprotectants, dimethyl sulfoxide (DMSO) and ethylene glycol (EG) were investigated using a murine embryo model. Female F-1 mice were stimulated with gonadotropin, induced ovulation with hCG and mated. Two cell embryos were collected and cultured after exposure to either DMSO or EG. Embryo development was evaluated up to the blastocyst stage. The total cell count of blastocysts that were treated with DMSO ($68.1{\pm}24.1$) at the 2-cell stage was significantly lower than that were treated with EG ($81.2{\pm}27.0$) or the control ($99.0{\pm}18.3$) (p<0.001). On comparison of two cryoprotectant treated groups, the DMSO treated group showed a decreased cell count compared with the EG treated group (p<0.05). Both DMSO ($15.4{\pm}1.5$) and EG ($10.2{\pm}1.4$) treated groups showed higher apoptosis rates of cells in the blastocyst compared with the control ($6.1{\pm}0.9$, p<0.0001). In addition, the DMSO treated group showed more apoptotic cells than the EG treated group (p<0.001). The potential toxicity of cryoprotectants was uncovered by prolonged exposure of murine embryos to either DMSO or EG at room temperature. When comparing two cryoprotective agents, EG appeared to be less toxic than DMSO at least in a murine embryo model.

Potential Importance of Proteomics in Research of Reproductive Biology (생식생물학에세 프로테오믹스의 응용)

  • Kim Ho-Seung;Yoon Yong-Dal
    • Development and Reproduction
    • /
    • v.8 no.1
    • /
    • pp.1-9
    • /
    • 2004
  • The potential importance of proteomic approaches has been clearly demonstrated in other fields of human medical research, including liver and heart disease and certain forms of cancer. However, reproductive researches have been applied to proteomics poorly. Proteomics can be defined as the systematic analysis of proteins for their identity, quantity, and function. It could increase the predictability of early drug development and identify non-invasive biomarkers of toxicity or efficacy. Proteome analysis is most commonly accomplished by the combination of two-dimensional gel electrophoresis(2DE) and MALDI-TOF(matrix-assisted laser desorption ionization-time of flight) MS(mass spectrometry) or protein chip array and SELDI-TOF(surface-enhanced laser desorption ionization-time of flight) MS. In addition understanding the possessing knowledge of the developing biomarkers used to assess reproductive biology will also be essential components relevant to the topic of reproduction. The continued integration of proteomic and genomic data will have a fundamental impact on our understanding of the normal functioning of cells and organisms and will give insights into complex cellular processes and disease and provides new opportunities for the development of diagnostics and therapeutics. The challenge to researchers in the field of reproduction is to harness this new technology as well as others that are available to a greater extent than at present as they have considerable potential to greatly improve our understanding of the molecular aspects of reproduction both in health and disease.

  • PDF

Initial Risk Assessment of Disodium Disulphite in OECD High Production Volume Chemical Program

  • Sanghwan Song;Park, Yoonho;Park, Hye-Youn;Kwon, Min-Jeoung;Koo, Hyun-Ju;Jeon, Seong-Hwan;Na, Jin-Gyun;Park, Kwangsik
    • Toxicological Research
    • /
    • v.18 no.1
    • /
    • pp.23-29
    • /
    • 2002
  • Disodium disulphite, the HPV chemical, was assigned to Korea in order to implement OECD SIDS program in 1999. It was produced about 3,200 ton/year in 1998. This report evaluates the toxic potency of disodium disulphite based on the environmental and mammalian effects as well as human exposure. Oral $LD_{50}$ in rats is 1,540 mg/kg b.w. and effects was observed to the stomach, liver and the GI track that was filled with blood. For repeated dose toxicity, the predominant effect was the induction of stomach lesion due to local irritation. The no observed adverse effect lever for local (stomach irritation) was about 217 mg/kg bw/day. There is no evidence that disodium disulphite is genotoxic in vivo. No reproductive or developmental toxicty of disodium disulphite was observed for the period up to 2 yr and over three generation. In humans, urticaria and asthma with itching, edema, rhinitis, and nasal congestion were reported. Disodium disulphite is unlikely to induce respiratory sensitization but may enhance symptom of asthma in sensitive individuals. This chemical would be mainly transported to water compartment when released to environmental compartments since it is highly water soluble (470 g/l at 20). Low K oc (2.447) indicates disodium disulphite is so mobile in soil that it may not stay in the terrestrial compartment. The chemical has been tested in a limited number of aquatic species. hem acute toxicity test to fish, 96 hr-$LC_{50}$ was > 100 mg/1. For algae, 72 hr-$XC_{50}$ was 48.1 mg/1. For daphnid, the acute toxicity value of 48 hr-$EC_{50}$ was 88.76 mg/1, and chronic value of 21day-NOEC was > 10 mg/1. Therefore, PNEC of 0.1 mg/l for the aquatic organism was obtained from the chronic value of daphnid using the assessment factor of 100. Based on these data the disodium disulphite was recommended as low priority for further post-SIDS work in OECD.

Altered Gene Profiles using KISTCHIP-400 in MCF-7 cells after Exposure to Di(2-ethylhexyl) Phthalate (DEHP) and Dibutyl Phthalate (DBP)

  • Yun, Hye-Jung;Kim, Youn-Jung;Kim, Eun-Young;Ryu, Jae-Chun
    • Proceedings of the Korea Society of Environmental Toocicology Conference
    • /
    • 2003.10a
    • /
    • pp.174-174
    • /
    • 2003
  • There are many synthetic chemicals, such as di(2-ethylhexyl) phthalate (DEHP) and dibutyl phthalate (DBP), used in chemical reaction processes in industry. The establishment of toxicity and detection of synthetic chemicals that may pose a genetic hazard in our enviornment is subjects of great concern at present DEHP, a ubiquitous phthalate plasticizer, induces a wide range of developmental and reproductive toxicities in mammals. DEHP belongs to the large diverse class of peroxisome proliferator compounds, which include herbicides, hypolipidemic drugs. DBP is a plasticizer used to products containing nitrocellulose, polyvinyl acetate, and polyvinyl chloride such as food wraps and blood bags. DBP is also used in cosmetics as a solvent and fixative for perfumes, a suspension agent for solids, an antifoamer, a skin emollient, and hair spray The present study was performed to examine patterns of gene expression in MCF-7 cells following DEHP and DBP exposure. Changes in gene expression were determined by microarray analysis using KISTCHIP-400 including 401 endocrine related genes based on public database and research papers. Of the genes analysis, we determined that genes detected by array showed a 2-fold or greater change in their expression level(increase or decrease). The results of this study demonstrate that a number of genes were differentially expressed in MCF-7 cells but these changes were not significant. Therefore, we keep going this study using microarray analysis and future studies will examine changes of gene expression on time-course and does treatment in variable cell lines.

  • PDF

Spermatogenic and Antioxidant Potential of Mucuna prureins (L.) in Epididymal Spermatozoa: A Dose Dependent Effect

  • Suresh, Sekar;Prithiviraj, Ealumali;Venkatalakshmi, Nagella;Ganesh, Mohanraj Karthik;Ganesh, Lakshmanan;Lee, Hyun-Jeong;Prakash, Seppan
    • Reproductive and Developmental Biology
    • /
    • v.35 no.4
    • /
    • pp.441-447
    • /
    • 2011
  • The study aim is to investigate the free radicals scavenging and spermatogenic potentials, as well as to analyze any reproductive toxicity of ethanolic extract of Mucuna prureins (M. pruriens) Linn. in spermatozoa, under different dosages in normal male rat. Normal rats were randomly selected and suspension of the extract was administered orally at the dosages of 150, 200 and 250 mg/kg body weight of the different groups of male rats (n=6) once in a day for 60 days and grouped as group II, III and IV respectively. Saline treated rats served as control -group I. On the $60^{th}$ day the animals were sacrificed and the epididymal sperm were subjected to various analyses like level of ROS production, LPO, enzymatic and non enzymatic antioxidant, morphology, morphometry, chromosomal integrity and DNA damage. Results showed significant reduction in ROS production and peroxidation and significant increase in both enzymic and non-enzymic antioxidants in all concentration treated groups when compared with control. Results from all the drug treated groups showed good sperm morphology, increased sperm count and motility. There was no DNA damage and showed normal chromosomal integrity even in 250 mg/kg dose. When compared with control all the three extract treated groups showed increased ROS scavenging activity. However, group II (200 mg/kg) showed significant changes in all the parameters. From the present study it was confirmed that the M. pruriens has potential to improve the sperm qualitatively and quantitatively through scavenging the excess ROS with any adverse side effects. These observations suggest that ethanolic seed extract of M. pruriens may serve as anti-oxidant that can exploit to treat the oxidative stress mediated male factor infertility.

The Search of Pig Pheromonal Odorants for Biostimulation Control System Technologies: Prediction of Pig Pheromonal Tetrahydrofuran-2-yl Family Compounds by Means of Ligand Based Approach (생물학적 자극 통제 수단으로 활용하기 위한 돼지 페로몬성 냄새 물질의 탐색: Ligand Based Approach에 의한 돼지 페로몬성 Tetrahydrofuran-2-yl 계 화합물의 예측)

  • Soung, Min-Gyu;Cho, Yun-Gi;Park, Chang-Sik;Sung, Nack-Do
    • Reproductive and Developmental Biology
    • /
    • v.32 no.3
    • /
    • pp.141-146
    • /
    • 2008
  • To search a new porcine pheromonal odorant, the models of four type (2D-QSAR, HQSAR, CoMFA & CoMSlA) were derived from quantitative structure-activity relationship (QSAR) between tetrahydrofuran-2-yl family compounds and their observed binding affinity constants (Obs.p$[Od]_{50}$). The optimized CoMFA model (predictability; $r^{2}_{cv.}(q^2)$=0.886 & correlation coefficient: $r^{2}_{ncv.}$=0.984) from ligand based approaches was confirmed as the best model among them. The $N^{1}$-allyl-$N^{2}$-(tetrahydrofuran-2-yl)methyl)oxalamide (P1), 2-(4-trimethylammoniummethylcyclohexyloxy)tetrahydrofurane (P5) and 2-(3-trimethylammoniummethylcyclohexyloxy)tetrahydrofurane (P6) molecules predicted as porcine pheromonal odorant by the CoMFA model were showed relatively high binding affinity constant values (Pred.p$[Od]_{50}=8{\sim}10$) and very lower toxicity values against some sorts of toxicity.