• Title/Summary/Keyword: reporter assay

Search Result 317, Processing Time 0.021 seconds

Lactate promotes vascular smooth muscle cell switch to a synthetic phenotype by inhibiting miR-23b expression

  • Hu, Yanchao;Zhang, Chunyan;Fan, Yajie;Zhang, Yan;Wang, Yiwen;Wang, Congxia
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.26 no.6
    • /
    • pp.519-530
    • /
    • 2022
  • Recent research indicates that lactate promotes the switching of vascular smooth muscle cells (VSMCs) to a synthetic phenotype, which has been implicated in various vascular diseases. This study aimed to investigate the effects of lactate on the VSMC phenotype switch and the underlying mechanism. The CCK-8 method was used to assess cell viability. The microRNAs and mRNAs levels were evaluated using quantitative PCR. Targets of microRNA were predicted using online tools and confirmed using a luciferase reporter assay. We found that lactate promoted the switch of VSMCs to a synthetic phenotype, as evidenced by an increase in VSMC proliferation, mitochondrial activity, migration, and synthesis but a decrease in VSMC apoptosis. Lactate inhibited miR-23b expression in VSMCs, and miR-23b inhibited VSMC's switch to the synthetic phenotype. Lactate modulated the VSMC phenotype through downregulation of miR-23b expression, suggesting that overexpression of miR-23b using a miR-23b mimic attenuated the effects of lactate on VSMC phenotype modulation. Moreover, we discovered that SMAD family member 3 (SMAD3) was the target of miR-23b in regulating VSMC phenotype. Further findings suggested that lactate promotes VSMC switch to synthetic phenotype by targeting SMAD3 and downregulating miR-23b. These findings suggest that correcting the dysregulation of miR-23b/SMAD3 or lactate metabolism is a potential treatment for vascular diseases.

Wnt-C59 inhibits proinflammatory cytokine expression by reducing the interaction between β-catenin and NF-κB in LPS-stimulated epithelial and macrophage cells

  • Jang, Jaewoong;Song, Jaewon;Sim, Inae;Yoon, Yoosik
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.25 no.4
    • /
    • pp.307-319
    • /
    • 2021
  • Dysregulation of the Wnt pathway causes various diseases including cancer, Parkinson's disease, Alzheimer's disease, schizophrenia, osteoporosis, obesity and chronic kidney diseases. The modulation of dysregulated Wnt pathway is absolutely necessary. In the present study, we evaluated the anti-inflammatory effect and the mechanism of action of Wnt-C59, a Wnt signaling inhibitor, in lipopolysaccharide (LPS)-stimulated epithelial cells and macrophage cells. Wnt-C59 showed a dose-dependent anti-inflammatory effect by suppressing the expression of proinflammatory cytokines including IL6, CCL2, IL1A, IL1B, and TNF in LPS-stimulated cells. The dysregulation of the Wnt/β-catenin pathway in LPS stimulated cells was suppressed by WntC59 treatment. The level of β-catenin, the executor protein of Wnt/β-catenin pathway, was elevated by LPS and suppressed by Wnt-C59. Overexpression of β-catenin rescued the suppressive effect of Wnt-C59 on proinflammatory cytokine expression and nuclear factor-kappa B (NF-κB) activity. We found that the interaction between β-catenin and NF-κB, measured by co-immunoprecipitation assay, was elevated by LPS and suppressed by Wnt-C59 treatment. Both NF-κB activity for its target DNA binding and the reporter activity of NF-κB-responsive promoter showed identical patterns with the interaction between β-catenin and NF-κB. Altogether, our findings suggest that the anti-inflammatory effect of Wnt-C59 is mediated by the reduction of the cellular level of β-catenin and the interaction between β-catenin and NF-κB, which results in the suppressions of the NF-κB activity and proinflammatory cytokine expression.

PLK2 Single Nucleotide Variant in Gastric Cancer Patients Affects miR-23b-5p Binding

  • Dominkus, Pia Puzar;Mesic, Aner;Hudler, Petra
    • Journal of Gastric Cancer
    • /
    • v.22 no.4
    • /
    • pp.348-368
    • /
    • 2022
  • Purpose: Chromosomal instability is a hallmark of gastric cancer (GC). It can be driven by single nucleotide variants (SNVs) in cell cycle genes. We investigated the associations between SNVs in candidate genes, PLK2, PLK3, and ATM, and GC risk and clinicopathological features. Materials and Methods: The genotyping study included 542 patients with GC and healthy controls. Generalized linear models were used for the risk and clinicopathological association analyses. Survival analysis was performed using the Kaplan-Meier method. The binding of candidate miRs was analyzed using a luciferase reporter assay. Results: The PLK2 Crs15009-Crs963615 haplotype was under-represented in the GC group compared to that in the control group (Pcorr=0.050). Male patients with the PLK2 rs963615 CT genotype had a lower risk of GC, whereas female patients had a higher risk (P=0.023; P=0.026). The PLK2 rs963615 CT genotype was associated with the absence of vascular invasion (P=0.012). The PLK3 rs12404160 AA genotype was associated with a higher risk of GC in the male population (P=0.015). The ATM Trs228589-Ars189037-Grs4585 haplotype was associated with a higher risk of GC (P<0.001). The ATM rs228589, rs189037, and rs4585 genotypes TA+AA, AG+GG, and TG+GG were associated with the absence of perineural invasion (P=0.034). In vitro analysis showed that the cancer-associated miR-23b-5p mimic specifically bound to the PLK2 rs15009 G allele (P=0.0097). Moreover, low miR-23b expression predicted longer 10-year survival (P=0.0066) in patients with GC. Conclusions: PLK2, PLK3, and ATM SNVs could potentially be helpful for the prediction of GC risk and clinicopathological features. PLK2 rs15009 affects the binding of miR-23b-5p. MiR-23b-5p expression status could serve as a prognostic marker for survival in patients with GC.

Sp1-Induced SETDB1 Overexpression Transcriptionally Inhibits HPGD in a β-Catenin-Dependent Manner and Promotes the Proliferation and Metastasis of Gastric Cancer

  • Fan, Yaguan;Yang, Libo;Ren, Yi;Wu, Yunhua;Li, Linhai;Li, Lihua
    • Journal of Gastric Cancer
    • /
    • v.22 no.4
    • /
    • pp.319-338
    • /
    • 2022
  • Purpose: Gastric cancer (GC) has high morbidity and mortality, the cure rate of surgical treatment and drug chemotherapy is not ideal. Therefore, development of new treatment strategies is necessary. We aimed to identify the mechanism underlying Sp1 regulation of GC progression. Methods and Methods: The levels of Sp1, β-catenin, SET domain bifurcated 1 (SETDB1), and 15-hydroxyprostaglandin dehydrogenase (HPGD) were detected by quantitative reverse transcription polymerase chain reaction and western blot analysis. The targets of SETDB1 were predicted by AnimalTFDB, and dual-luciferase reporter assay was used for confirming the combination of Sp1, β-catenin, and SETDB1. HGC27 or AGS cells (1×106 cells/mouse) were injected into mice via the caudal vein for GC model establishment. The level of Ki67 was detected using immunohistochemistry, and hematoxylin and eosin staining was performed for evaluating tumor metastasis in mice with GC. Results: HPGD was inhibited, while the protein levels of Sp1, β-catenin, and SETDB1 were up-regulated in GC tissues and cell lines. HPGD overexpression or SETDB1 silencing inhibited the proliferation, invasion, and migration of GC cells, and Sp1 regulated the proliferation, invasion, and migration of GC cells in a β-catenin-dependent manner. Furthermore, HPGD served as a target of SETDB1, and it was negatively regulated by SETDB1; additionally, Sp1 and β-catenin bound to the SETDB1 promoter and negatively regulated HPGD expression. We proved that Sp1 regulated GC progression via the SETDB1/HPGD axis. Conclusions: Our findings revealed that Sp1 transcriptionally inhibited HPGD via SETDB1 in a β-catenin-dependent manner and promoted the proliferation and metastasis of GC cells.

LncRNA LINC01232 Enhances Proliferation, Angiogenesis, Migration and Invasion of Colon Adenocarcinoma Cells by Downregulating miR-181a-5p

  • Yu Yuan;Zhou Long
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.3
    • /
    • pp.398-409
    • /
    • 2023
  • LncRNAs play crucial roles in the progression of colon adenocarcinoma (COAD), but the role of LINC01232 in COAD has not received much attention. The present study was designed to explore the related mechanisms of LINC01232 in the progression of COAD. LINC01232, miR-181a-5p, p53, c-myc, Bcl-2, cyclin D1, p16, Bax, VEGF, E-cadherin, vimentin, N-cadherin and SDAD1 expressions were determined by western blot and qRT-PCR. CCK-8, tubule formation, and Transwell assays were employed to detect proliferation, angiogenesis, and migration/invasion of COAD cells, respectively. The relationship between LINC01232 and miR-181a-5p was predicted by LncBase Predicted v.2, and then verified through dual luciferase reporter gene assay. According to the results, LINC01232 was highly expressed in COAD cells and enhanced proliferation, angiogenesis, migration, and invasion of COAD cells. Downregulated LINC01232 promoted expression of p53 and p16, and inhibited c-myc, Bcl-2 and cyclin D1 expressions in COAD cells, while upregulation of LINC01232 generated the opposite effects. LINC01232 was negatively correlated with miR-181a-5p while downregulated miR181a-5p could reverse the effects of siLINC01232 on cell proliferation, angiogenesis, migration, and invasion. Similarly, miR-181a-5p mimic could also offset the effect of LINC01232 overexpression. SiLINC01232 increased the expressions of Bax and E-cadherin, and decreased the expressions of VEGF, vimentin, N-cadherin and SDAD1, which were partially attenuated by miR-181a-5p inhibitor. Collectively, LINC01232 enhances the proliferation, migration, invasion, and angiogenesis of COAD cells by decreasing miR-181a-5p expression.

Ginsenoside Re prevents 3-methyladenine-induced catagen phase acceleration by regulating Wnt/β-catenin signaling in human dermal papilla cells

  • Gyusang Jeong;Seung Hyun Shin;Su Na Kim;Yongjoo Na;Byung Cheol Park;Jeong Hun Cho;Won-Seok Park;Hyoung-June Kim
    • Journal of Ginseng Research
    • /
    • v.47 no.3
    • /
    • pp.440-447
    • /
    • 2023
  • Background: The human hair follicle undergoes cyclic phases-anagen, catagen, and telogen-throughout its lifetime. This cyclic transition has been studied as a target for treating hair loss. Recently, correlation between the inhibition of autophagy and acceleration of the catagen phase in human hair follicles was investigated. However, the role of autophagy in human dermal papilla cells (hDPCs), which is involved in the development and growth of hair follicles, is not known. We hypothesized that acceleration of hair catagen phase upon inhibition of autophagy is due to the downregulation of Wnt/β-catenin signaling in hDPCs, and that components of Panax ginseng extract can increase the autophagic flux in hDPCs. Methods: We generated an autophagy-inhibited condition using 3-methyladenine (3-MA), a specific autophagy inhibitor, and investigated the regulation of Wnt/β-catenin signaling using the luciferase reporter assay, qRT-PCR, and western blot analysis. In addition, cells were cotreated with ginsenoside Re and 3-MA and their roles in inhibiting autophagosome formation were investigated. Results: We found that the unstimulated anagen phase dermal papilla region expressed the autophagy marker, LC3. Transcription of Wnt-related genes and nuclear translocation of β-catenin were reduced after treatment of hDPCs with 3-MA. In addition, treatment with the combination of ginsenoside Re and 3-MA changed the Wnt activity and hair cycle by restoring autophagy. Conclusions: Our results suggest that autophagy inhibition in hDPCs accelerates the catagen phase by downregulating Wnt/β-catenin signaling. Furthermore, ginsenoside Re, which increased autophagy in hDPCs, could be useful for reducing hair loss caused by abnormal inhibition of autophagy.

Circ-SNX27 sponging miR-375/RPN1 axis contributes to hepatocellular carcinoma progression

  • Chao Zheng;Jin Liang;Shoude Yu;Hua Xu;Lin Dai;Dan Xu
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.27 no.4
    • /
    • pp.333-344
    • /
    • 2023
  • Hepatocellular carcinoma (HCC) is a prevalent malignant tumor with high fatality. It has yet to be reported whether circ-SNX27 can affect the progression of HCC. This study attempted to analyze circ-SNX27's precise role and underlying mechanisms in HCC. HCC cell lines and tumor specimens from HCC patients were analyzed using quantitative real-time PCR and Western blotting to quantify the expressions of circ-SNX27, miR-375, and ribophorin I (RPN1). Cell invasion and cell counting kit 8 experiments were conducted for the evaluation of HCC cell invasion and proliferation. Caspase-3 Activity Assay Kit was utilized to gauge the caspase-3 activity. Luciferase reporter and RNA immunoprecipitation assays were executed to ascertain the relationships among miR-375, circ-SNX27, and RPN1. To determine how circ-SNX27 knockdown affects the growth of HCC xenografts in vivo, tumor-bearing mouse models were constructed. Elevated expressions of circ-SNX27 and RPN1 as well as a reduced miR-375 expression were observed among HCC cells and HCC patient tumor specimens. Knocking-down circ-SNX27 in HCC cells abated their proliferative and invasive abilities but raised their caspase-3 activity. Moreover, the poor levels of circ-SNX27 inhibited HCC tumor growth among the mice. Circ-SNX27 enhanced RPN1 by competitively binding with miR-375. Silencing miR-375 in HCC cells promoted their malignant phenotypes. Nonetheless, the promotive effect of miR375 silencing was reversible via the knockdown of circ-SNX27 or RPN1. This research demonstrated that circ-SNX27 accelerated the progression of HCC by modulating the miR-375/RPN1 axis. This is indicative of circ-SNX27's potential as a target for the treatment of HCC.

Comprehensive Evaluation System for Post-Metabolic Activity of Potential Thyroid-Disrupting Chemicals

  • Yurim Jang;Ji Hyun Moon;Byung Kwan Jeon;Ho Jin Park;Hong Jin Lee;Do Yup Lee
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.10
    • /
    • pp.1351-1360
    • /
    • 2023
  • Endocrine-disrupting chemicals (EDCs) are compounds that disturb hormonal homeostasis by binding to receptors. EDCs are metabolized through hepatic enzymes, causing altered transcriptional activities of hormone receptors, and thus necessitating the exploration of the potential endocrine-disrupting activities of EDC-derived metabolites. Accordingly, we have developed an integrative workflow for evaluating the post-metabolic activity of potential hazardous compounds. The system facilitates the identification of metabolites that exert hormonal disruption through the integrative application of an MS/MS similarity network and predictive biotransformation based on known hepatic enzymatic reactions. As proof-of-concept, the transcriptional activities of 13 chemicals were evaluated by applying the in vitro metabolic module (S9 fraction). Identified among the tested chemicals were three thyroid hormone receptor (THR) agonistic compounds that showed increased transcriptional activities after phase I+II reactions (T3, 309.1 ± 17.3%; DITPA, 30.7 ± 1.8%; GC-1, 160.6 ± 8.6% to the corresponding parents). The metabolic profiles of these three compounds showed common biotransformation patterns, particularly in the phase II reactions (glucuronide conjugation, sulfation, GSH conjugation, and amino acid conjugation). Data-dependent exploration based on molecular network analysis of T3 profiles revealed that lipids and lipid-like molecules were the most enriched biotransformants. The subsequent subnetwork analysis proposed 14 additional features, including T4 in addition to 9 metabolized compounds that were annotated by prediction system based on possible hepatic enzymatic reaction. The other 10 THR agonistic negative compounds showed unique biotransformation patterns according to structural commonality, which corresponded to previous in vivo studies. Our evaluation system demonstrated highly predictive and accurate performance in determining the potential thyroid-disrupting activity of EDC-derived metabolites and for proposing novel biotransformants.

LncRNA AC005332.7 Inhibited Ferroptosis to Alleviate Acute Myocardial Infarction Through Regulating miR-331-3p/CCND2 Axis

  • Rixin Dai;Xiheng Yang;Wujin He;Qiang Su;Xuexin Deng;Juanfen Li
    • Korean Circulation Journal
    • /
    • v.53 no.3
    • /
    • pp.151-167
    • /
    • 2023
  • Background and Objectives: Acute myocardial infarction (AMI) often occurs suddenly and leads to fatal consequences. Ferroptosis is closely related to the progression of AMI. However, the specific mechanism of ferroptosis in AMI remains unclear. Methods: We constructed a cell model of AMI using AC16 cells under oxygen and glucose deprivation (OGD) conditions and a mice model of AMI using the left anterior descending (LAD) ligation. The 3-(4, 5-dimethylthiazol-2-yl)-2, 5 diphenyltetrazolium bromide was employed to determine cell viability. The levels of lactate dehydrogenase, creatine kinase, reactive oxygen species (ROS), glutathione (GSH), malondialdehyde (MDA), and iron were measured using corresponding kits. Dual luciferase reporter gene assay, RNA-binding protein immunoprecipitation, and RNA pull-down were performed to validate the correlations among AC005332.7, miR-331-3p, and cyclin D2 (CCND2). Hematoxylin and eosin staining was employed to evaluate myocardial damage. Results: AC005332.7 and CCND2 were lowly expressed, while miR-331-3p was highly expressed in vivo and in vitro models of AMI. AC005332.7 sufficiency reduced ROS, MDA, iron, and ACSL4 while boosting the GSH and GPX4, indicating that AC005332.7 sufficiency impeded ferroptosis to improve cardiomyocyte injury in AMI. Mechanistically, AC005332.7 interacted with miR-331-3p, and miR-331-3p targeted CCND2. Additionally, miR-331-3p overexpression or CCND2 depletion abolished the suppressive impact of AC005332.7 on ferroptosis in OGD-induced AC16 cells. Moreover, AC005332.7 overexpression suppressed ferroptosis in mice models of AMI. Conclusions: AC005332.7 suppressed ferroptosis in OGD-induced AC16 cells and LAD ligation-operated mice through modulating miR-331-3p/CCND2 axis, thereby mitigating the cardiomyocyte injury in AMI, which proposed novel targets for AMI treatment.

Mechanism of Anti-Invasive Action of Docosahexaenoic Acid in SW480 Human Colon Cancer Cell (인체 대장암 세포주 SW480에서 docosahexaenoic acid에 의한 침윤억제 기전)

  • Shin, So-Yeon;Kim, Yong-Jo;Song, Kyoung-Sub;Jing, Kaipeng;Kim, Na-Yeong;Jeong, So-Yeon;Park, Ji-Hoon;Seo, Kang-Sik;Heo, Jun-Young;Kwon, Hyun-Joo;Park, Jong-Il;Park, Seung-Kiel;Kweon, Gi-Ryang;Yoon, Wan-Hee;Hwang, Byung-Doo;Lim, Kyu
    • Journal of Life Science
    • /
    • v.20 no.4
    • /
    • pp.561-571
    • /
    • 2010
  • Colon cancer is one of the most common malignancies in the western world and the second leading cause of cancer death in Korea. Epidemiology studies have shown a reduced incidence of colon cancer among populations consuming a large quantity of ${\omega}3$-polyunsaturated fatty acids (${\omega}3$-PUFA) of marine origin. Recently, it has been found that ${\omega}3$-PUFA has an antineoplastic effect in several cancers. This study was designed to investigate the mechanism of the anti-invasive effect of ${\omega}3$-PUFA in colon cancer. ${\omega}3$-PUFA, docosahexaenoic acids (DHA) and eicosapentaenoic acid (EPA) treatment resulted in a dose-dependent inhibition of cell growth in SW480 human colon cancer cells. In contrast, arachidonic acid (AA), a ${\omega}6$-PUFA, exhibited no significant effect. This action likely involves apoptosis, given that DHA treatment increased apoptotic cells in TUNEL assay. Moreover, invasiveness of SW480 cells was inhibited following treatment of DHA in a dose-dependent manner; in contrast, AA had no effect. The levels of MMP-9 and MMP-2 mRNA decreased after DHA pretreatment. MMP-9 and MMP-2 promoter activities were also inhibited by DHA treatment. The levels of NF-kB and p-IkB protein were down-regulated by DHA pretreatment in a dose dependent manner. In addition, DHA inhibited NF-kB promoter reporter activities. These findings suggest that ${\omega}3$-PUFA may inhibit cancer cell invasion by inhibition of MMPs via reduction of NF-kB in colon cancer. In conclusion, ${\omega}3$-PUFA could be used for chemoprevention and treatment of human colon cancer.