• Title/Summary/Keyword: reporter assay

Search Result 315, Processing Time 0.034 seconds

Specific Isoforms of Protein Kinase G Downregulate the Transcription of Cyclin D1 in NIH3T3

  • Lim, Seon Young;Soh, Jae-Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.4
    • /
    • pp.1165-1169
    • /
    • 2013
  • To elucidate the role of PKG isoforms in transcriptional control of cyclin D1, we employed a series of expression vectors of PKG $1{\alpha}$ and PKG $1{\beta}$ which encode HA-tagged wild type and constitutively active (SD and ${\Delta}N$) mutants. Our present study demonstrates that both the constitutively active mutants of PKG $1{\beta}$ downregulate the transcription of cyclin D1 when transiently transfected in NIH3T3 cells, whereas PKG $1{\alpha}$ mutants show weak inhibition. We further studied the transcriptional regulators of cyclin D1, such as, c-fos, NF-${\kappa}B$, and CRE by using the luciferase reporter assay. Constitutively active mutants of PKG $1{\beta}$ showed marked transcriptional downregulation of c-fos in NIH3T3 cells, whereas PKG $1{\alpha}$ downregulated c-fos to a lesser extent. We also found that the constitutively active mutants of PKG negatively regulated the activation of NF-${\kappa}B$ and CRE, suggesting their involvement in the regulation of cyclin D1.

Regulation of the Lactobacillus Strains on HMGCoA Reductase Gene Transcription in Human HepG2 Cells via Nuclear Factor-κB

  • Chen, Kun;Li, Shaocong;Chen, Fang;Li, Jun;Luo, Xuegang
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.2
    • /
    • pp.402-407
    • /
    • 2016
  • Lactic acid bacteria have been identified to be effective in reducing cholesterol levels. Most of the mechanistic studies were focused on the bile salt deconjugation ability of bile salt hydrolase in lactic acid bacteria. However, the mechanism by which Lactobacillus decreases cholesterol levels has not been thoroughly studied in intact primate cells. 3-Hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMGCR) is the vital enzyme in cholesterol synthesis. To confirm the effect of probiotic Lactobacillus strains on HMGCR level, in the present study, human hepatoma HepG2 cells were treated with Lactobacillus strains, and then the HMGCR level was illustrated by luciferase reporter assay and RT-PCR. The results showed that the level of HMGCR was suppressed after being treated with the live Lactobacillus strains. These works might set a foundation for the following study of the antihyperlipidemic effects of L. acidophilus, and contribute to the development of functional foods or drugs that benefit patients suffering from hyperlipidemia diseases.

Chemical Constituents Identified from Fruit Body of Cordyceps bassiana and Their Anti-Inflammatory Activity

  • Suh, Wonse;Nam, Gyeongsug;Yang, Woo Seok;Sung, Gi-Ho;Shim, Sang Hee;Cho, Jae Youl
    • Biomolecules & Therapeutics
    • /
    • v.25 no.2
    • /
    • pp.165-170
    • /
    • 2017
  • Cordyceps bassiana is one of Cordyceps species with anti-oxidative, anti-cancer, anti-inflammatory, anti-diabetic, anti-obesity, anti-angiogenic, and anti-nociceptive activities. This mushroom has recently demonstrated to have an ability to reduce 2,4-dinitrofluorobenzene-induced atopic dermatitis symptoms in NC/Nga mice. In this study, we further examined phytochemical properties of this mushroom by column chromatography and HPLC analysis. By chromatographic separation and spectroscopic analysis, 8 compounds, such as 1,9-dimethylguanine (1), adenosine (2), uridine (3), nicotinamide (4), 3-methyluracil (5), 1,7-dimethylxanthine (6), nudifloric acid (7), and mannitol (8) were identified from 6 different fractions and 4 more subfractions. Through evaluation of their anti-inflammatory activities using reporter gene assay and mRNA analysis, compound 1 was found to block luciferase activity induced by $NF-{\kappa}B$ and AP-1, suppress the mRNA levels of cyclooxygenase (COX)-2 and tumor necrosis factor $(TNF)-{\alpha}$. Therefore, our data strongly suggests that compound 1 acts as one of major principles in Cordyceps bassiana with anti-inflammatory and anti-atopic dermatitis activities.

Recovery of TRIM25-Mediated RIG-I Ubiquitination through Suppression of NS1 by RNA Aptamers

  • Woo, Hye-Min;Lee, Jin-Moo;Kim, Chul-Joong;Lee, Jong-Soo;Jeong, Yong-Joo
    • Molecules and Cells
    • /
    • v.42 no.10
    • /
    • pp.721-728
    • /
    • 2019
  • Non-structural protein 1 (NS1) of influenza virus has been shown to inhibit the innate immune response by blocking the induction of interferon (IFN). In this study, we isolated two single-stranded RNA aptamers specific to NS1 with $K_d$ values of $1.62{\pm}0.30nM$ and $1.97{\pm}0.27nM$, respectively, using a systematic evolution of ligand by exponential enrichment (SELEX) procedure. The selected aptamers were able to inhibit the interaction of NS1 with tripartite motif-containing protein 25 (TRIM25), and suppression of NS1 enabled retinoic acid inducible gene I (RIG-I) to be ubiquitinated regularly by TRIM25. Additional luciferase reporter assay and quantitative real-time PCR (RT-PCR) experiments demonstrated that suppression of NS1 by the selected aptamers induced IFN production. It is noted that viral replication was also inhibited through IFN induction in the presence of the selected aptamers. These results suggest that the isolated aptamers are strongly expected to be new therapeutic agents against influenza infection.

Construction of a Bile-responsive Expression System in Lactobacillus plantarum

  • Chae, Jong Pyo;Pajarillo, Edward Alain;Hwang, In-Chan;Kang, Dae-Kyung
    • Food Science of Animal Resources
    • /
    • v.39 no.1
    • /
    • pp.13-22
    • /
    • 2019
  • This study aimed to develop a bile-responsive expression system for lactobacilli. The promoters of four genes, encoding phosphoenolpyruvate-dependent sugar phosphotransferase (mannose-specific), L-lactate dehydrogenase (LDH), HPr kinase, and D-alanine-D-alanine ligase, respectively, which were highly expressed by bile addition in Lactobacillus johnsonii PF01, were chosen. Each promoter was amplified by polymerase chain reaction and fused upstream of the ${\beta}$-glucuronidase gene as a reporter, respectively. Then, these constructs were cloned into E. coli-Lactobacillus shuttle vector pULP2, which was generated by the fusion of pUC19 with the L. plantarum plasmid pLP27. Finally, the constructed vectors were introduced into L. plantarum for a promoter activity assay. The LDH promoter showed the highest activity and its activity increased 1.8-fold by bile addition. The constructed vector maintained in L. plantarum until 80 generations without selection pressure. A bile-responsive expression vector, $pULP3-P_{LDH}$, for Lactobacillus spp. can be an effective tool for the bile-inducible expression of bioactive proteins in intestine after intake in the form of fermented dairy foods.

Estrogenic Activity of Leguminosae Species in Korea using MCF-7 Cells (유방암 세포주를 이용한 국내 자생 콩과식물의 에스트로겐 활성검색)

  • Bae, Ji-Yeong;Kim, Hye-Jin;Park, Woo Sung;Ahn, Mi-Jeong
    • Korean Journal of Pharmacognosy
    • /
    • v.52 no.2
    • /
    • pp.118-125
    • /
    • 2021
  • Leguminosae plants are known for its phytoestrogen constituents which play a major role in the prevention of osteoporosis, cancer and heart disease. In this study, the estrogenic activity of 158 samples from 58 species, 3 subspecies and 10 varieties of Leguminosae plants growing in Korea was evaluated. An estrogen, 17β-estradiol was used as a reference compound, and the potency of each sample was expressed in relative efficacy (%) compared to that of the reference by a reporter gene assay using MCF-7 cells. As results, the estrogenic activity of methanolic extracts of Phaseolus vulgaris var. humilis, Sophora flavescens, Lespedeza × robusta, Indigofera pseudotinctoria, Maackia amurensis, Glycine soja, Wisteria floribunda, Robinia pseudoacacia, Astragalus sinicus, Pueraria lobata, Lespedeza maximowiczii var. tomentella, Trifolium repens and Crotalaria sessiliflora showed similar to or higher at 100 ㎍/ml than the positive control at 10 nM. These findings can be a potential evidence for developing estrogen alternatives resolving various types of menopause symptoms with information on proper harvest season and usage plant part. To the best of our knowledge, the estrogenic activity of Lespedeza × robusta, Indigofera pseudotinctoria, Wisteria floribunda, Robinia pseudoacacia and Lespedeza maximowiczii var. tomentella is reported for the first time in this study.

New inhibitors of the NF-kB activation and NO production from Artemisia sylvatica

  • Jin, Huizi;Lee, Jeong-Hyung;Lee, Dong-Ho;Kim, Young-Ho;Lee, Jung-Joon
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.67.1-67.1
    • /
    • 2003
  • Three new guaianolide type of sesquiterpene lactones, 8${\alpha}$-angeloyloxy-1${\alpha}$-hydroxy-3${\alpha}$,4${\alpha}$-epoxy-5${\alpha}$, 7${\alpha}$H-10(14), 11(13)-guaiadien-12,6${\alpha}$-olide (1), 8${\alpha}$-methylbutyryloxy-1${\alpha}$-hydroxy-3${\alpha}$, 4${\alpha}$-epoxy-5${\alpha}$, 7${\alpha}$H-10(14),11(13)-guaiadien-12,6${\alpha}$-olide (2), and 8${\alpha}$-isovaleryloxy-1${\alpha}$-hydroxy-3${\alpha}$, 4${\alpha}$-epoxy-5${\alpha}$, 7${\alpha}$H-10(14),11 (13)- guaiadien-12,6${\alpha}$-olide (3), together with six known sesquiterpenes, artemisolide (4), 3-methoxytanapartholide (5), deacetyllaurenobiolide (6), moxartenolide (7), arteminolide B (8), and arteminolide D (9) were isolated by bioassay-guided fractionation using the NF-kB mediated reporter gene assay system. (omitted)

  • PDF

Hsa_circ_0129047 sponges miR-665 to attenuate lung adenocarcinoma progression by upregulating protein tyrosine phosphatase receptor type B

  • Xiaofan Xia;Jinxiu Fan;Zhongjie Fan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.27 no.2
    • /
    • pp.131-141
    • /
    • 2023
  • Compelling evidence has demonstrated the critical role of circular RNAs (circRNAs) during lung adenocarcinoma (LUAD) progression. Herein, we explored a novel circRNA, circ_0129047, and detailed its mechanism of action. The expression of circ 0129047, microRNA-665 (miR-665), and protein tyrosine phosphatase receptor type B (PTPRB) in LUAD tissues and cells was determined using reverse transcription quantitative polymerase chain reaction and Western blotting. Cell Counting Kit8 and colony formation assays were conducted to detect LUAD cell proliferation, and western blotting was performed to quantify apoptosis-related proteins (Bcl2 and Bax). Luciferase reporter and RNA immunoprecipitation assays were used to validate the predicted interaction between miR-665 and circ_0129047 or PTPRB. A xenograft assay was used for the in vivo experiments. Circ_0129047 and PTPRB were downregulated in LUAD tissues and cells, whereas miR-665 expression was upregulated. Overexpression of circ_0129047 suppresses LUAD growth in vivo and in vitro. Circ_0129047 is the target of miR-665, and the miR-665 mimic ablated the antiproliferative and pro-apoptotic phenotypes of LUAD cells by circ_0129047 augmentation. MiR-665 targets the 3'UTR of PTPRB and downregulates PTPRB expression. PTPRB overexpression offsets the pro-proliferative potential of miR-665 in LUAD cells. Circ_0129047 sequestered miR-665 and upregulated PTPRB expression, thereby reducing LUAD progression, suggesting a promising approach for preventing LUAD.

Effect of Protein Kinase C Inhibitor (PKCI) on Radiation Sensitivity and c-fos Transcription Activity (Protein Kinase C Inhibitor (PKCI)에 의한 방사선 민감도 변화와 c-fos Proto-oncogene의 전사 조절)

  • Choi Eun Kyung;Chang Hyesook;Rhee Yun-Hee;Park Kun-Koo
    • Radiation Oncology Journal
    • /
    • v.17 no.4
    • /
    • pp.299-306
    • /
    • 1999
  • Purpose : The human genetic disorder ataxia-telangiectasia (AT) is a multisystem disease characterized by extreme radiosensitivity. The recent identification of the gene mutated in AT, ATM, and the demonstration that it encodes a homologous domain of phosphatidylinositol 3-kinase (PI3-K), the catalytic subunit of an enzyme involved in transmitting signals from the cell surface to the nucleus, provide support for a role of this gene in signal transduction. Although ionizing radiation was known to induce c-fos transcription, nothing is known about how ATM or PKCI mediated signal transduction pathway modulates the c-fos gene transcription and gene expression. Here we have studied the effect of PKCI on radiation sensitivity and c-fos transcription in normal and AT cells. Materials and Methods: Normal (LM217) and AT (AT5BIVA) cells were transfected with PKCI expression plasmid and the overexpression and integration of PKCI was evaluated by northern blotting and polymerase chain reaction, respectively. 5 Gy of radiation was exposed to LM and AT cells transfected with PKCI expression plasmid and cells were harvested 48 hours after radiation and investigated apoptosis with TUNEL method. The c-fos transcription activity was studied by performing CAT assay of reporter gene after transfection of c-fos CAT plasmid into AT and LM cells. Results: Our results demonstrate for the first time a role of PKCI on the radiation sensitivity and c-fos expression in LM and AT cells. PKCI increased radiation induced apoptosis in LM cells but reduced apoptosis in AT cells. The basal c-fos transcription activity is 70 times lower in AT cells than that in LM cells. The c-fos transcription activity was repressed by overexpression of PKCI in LM cells but not in AT cells. After induction of c-fos by Ras protein, overexpression of PKCI repressed c-fos transcription in LM cells but not in AT cells Conclusion: Overexpression of PKCI increased radiation sensitivity and repressed c-fos transcription in LM cells but not in AT cells. The results may be a. reason of increased radiation sensitivity of AT cells. PKCI may be involved in an ionizing radiation induced signal transduction pathway responsible for radiation sensitivity and c-fos transcription. The data also provided evidence for novel transcriptional difference between LM and AT cells.

  • PDF

Plumbagin from Plumbago Zeylanica L Induces Apoptosis in Human Non-small Cell Lung Cancer Cell Lines through NF-κB Inactivation

  • Xu, Tong-Peng;Shen, Hua;Liu, Ling-Xiang;Shu, Yong-Qian
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.4
    • /
    • pp.2325-2331
    • /
    • 2013
  • Objective: To detect effects of plumbagin on proliferation and apoptosis in non-small cell lung cancer cell lines, and investigate the underlying mechanisms. Materials and Methods: Human non-small cell lung cancer cell lines A549, H292 and H460 were treated with various concentrations of plumbagin. Cell proliferation rates was determined using both cell counting kit-8 (CCK-8) and clonogenic assays. Apoptosis was detected by annexin V/propidium iodide double-labeled flow cytometry and TUNEL assay. The levels of reactive oxygen species (ROS) were detected by flow cytometry. Activity of NF-${\kappa}B$ was examined by electrophoretic mobility shift assay (EMSA) and luciferase reporter assay. Western blotting was used to assess the expression of both NF-${\kappa}B$ regulated apoptotic-related gene and activation of p65 and $I{\kappa}B{\kappa}$. Results: Plumbagin dose-dependently inhibited proliferation of the lung cancer cells. The IC50 values of plumbagin in A549, H292, and H460 cells were 10.3 ${\mu}mol/L$, 7.3 ${\mu}mol/L$, and 6.1 ${\mu}mol/L$ for 12 hours, respectively. The compound concentration-dependently induced apoptosis of the three cell lines. Treatment with plumbagin increased the intracellular level of ROS, and inhibited the activation of NK-${\kappa}B$. In addition to inhibition of NF-${\kappa}B$/p65 nuclear translocation, the compound also suppressed the degradation of $I{\kappa}B{\kappa}$. ROS scavenger NAC highly reversed the effect of plumbagin on apoptosis and inactivation of NK-${\kappa}B$ in H460 cell line. Treatment with plumbagin also increased the activity of caspase-9 and caspase-3, downregulated the expression of Bcl-2, upregulated the expression of Bax, Bak, and CytC. Conclusions: Plumbagin inhibits cell growth and induces apoptosis in human lung cancer cells through an NF-${\kappa}B$-regulated mitochondrial-mediated pathway, involving activation of ROS.