• Title/Summary/Keyword: replication control

Search Result 288, Processing Time 0.029 seconds

Effects of Dietary Supplementation of Copper-Sulfate and Copper-Soy Proteinate on the Performance and Small Intestinal Microflora in Laying Hens (Copper-Sulfate와 Copper-Soy Proteinate 첨가가 산란계의 생산성과 장내 미생물 균총에 미치는 영향)

  • Kim, Chan Ho;Kang, Hwan Ku;Bang, Han Tae;Kim, Ji Hyuk;Hwangbo, Jong;Choi, Hee Cheol;Paik, In Kee;Moon, Hong Kil
    • Korean Journal of Poultry Science
    • /
    • v.41 no.4
    • /
    • pp.241-247
    • /
    • 2014
  • The objective of this experimental was to investigate the effect of dietary Cu-sulfate and Cu-soy proteinate on productive performance and small intestinal microflora. A total 1,000 Hy-Line Brown laying hens (35 weeks old) were randomly allotted to 1 of 5 dietary treatments: Control, Cu-sulfate 50, 100 (50, 100 ppm Cu supplementation as Cu-sulfate) and Cu-SP 50, 100 (50, 100 ppm Cu supplementation as Cu-soy proteinate). Each treatment was replicated 4 times with fifty birds per replication, housed in 2 birds cages. Fifty birds units were arranged according to randomized block design. Feeding trial lasted 5 weeks under 16L : 8D lighting regimen. Hen day egg production was significantly (P<0.05) higher in Cu treated groups than control. Feed intake, broken and shell-less egg production was not significantly influenced by treatment. Eggshell color, eggyolk color, haugh unit, and eggshell thickness were not significantly influenced by treatment. However, eggshell strength was significantly (P<0.05) greater in Cu treated groups than control. Concentration of copper of liver was significantly (P<0.05) greater in Cu treated groups than control. Concentration of zinc and iron of liver were not influenced by treatments. Population of Cl. perfrigens and Lactobacilli in the small intestinal content were significantly (P<0.05) influenced by treatments. Population of Cl. perfrigens decreased and that of Lactobacilli increased in the Cu supplement groups. In conclusion, dietary Cu sulfate and Cu-soy proteinate similarly improves egg production, eggshell strength, and favors intestinal microbial population of laying hens.

Development of an Integrated General Model (IGM) System for Comparison of Genetic Gains from Different Bull Selection Strategies for Korean Brown Cattle (Hanwoo)

  • Lee, Jeong-Soo;Kim, Hee-Bal;Kim, Si-Dong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.11
    • /
    • pp.1483-1503
    • /
    • 2011
  • To advance the effectiveness of the current Hanwoo improvement system, we developed a general simulation that compared a series of breeding schemes under realistic user circumstances. We call this system the Integrated General Model (IGM) and it allows users to control the breeding schemes and selection methods by manipulating the input parameters. The Current Hanwoo Performance and Progeny Test (CHPPT) scheme was simulated with a Modified Hanwoo Performance and Progeny Test (MHPPT) scheme using a Hanwoo Breeding Farm cow population of the Livestock Improvement Main Center (LOMC) of the National Agricultural Cooperatives Federation (NACF). To compare the two schemes, a new method, the Simple Hanwoo Performance Test (SHPT), which uses ultrasound technology for measuring the carcass traits of live animals, was developed. These three models, including the CHPPT, incorporated three types of selection criteria: phenotype (PH), true breeding value (TBV), and estimated breeding value (EBV). The simulation was scheduled to mimic an actual Hanwoo breeding program; thus, the simulation was run to include the years 1983-2020 for each breeding method and was replicated 10 times. The parameters for simulation were derived from the literature. Approximately 642,000 animals were simulated per replication for the CHPPT scheme; 129,000 animals were simulated for the MHPPT scheme and 112,000 animals for the SHPT scheme. Throughout the 38-year simulation, all estimated parameters of each simulated population, regardless of population size, showed results similar to the input parameters. The deviations between input and output values for the parameters in the large populations were statistically acceptable. In this study, we integrated three simulated models, including the CHPPT, in an attempt to achieve the greatest genetic gains within major economic traits including body weight at 12 months of age (BW12), body weight at 24 months of age (BW24), average daily gain from 6 to 12 months (ADG), carcass weight (CWT), carcass longissimus muscle area (CLMA), carcass marbling score (CMS), ultrasound scanned longissimus muscle area (ULMA), and ultrasound scanned marbling score (UMS).

Protected Organic Acid Blends as an Alternative to Antibiotics in Finishing Pigs

  • Upadhaya, S.D.;Lee, K.Y.;Kim, In Ho
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.11
    • /
    • pp.1600-1607
    • /
    • 2014
  • A total of 120 finishing pigs ([Yorkshire${\times}$Landrace]${\times}$Duroc) with an average body weight (BW) of $49.72{\pm}1.72kg$ were used in 12-wk trial to evaluate the effects of protected organic acids on growth performance, nutrient digestibility, fecal micro flora, meat quality and fecal gas emission. Pigs were randomly allotted to one of three dietary treatments (10 replication pens with 4 pigs per pen) in a randomly complete block design based on their initial BW. Each dietary treatment consisted of: Control (CON/basal diet), OA1 (basal diet+0.1% organic acids) and OA2 (basal diet+0.2% organic acids). Dietary treatment with protected organic acid blends linearly improved (p<0.001) average daily gain during 0 to 6 week, 6 to 12 week as well as overall with the increase in their inclusion level in the diet. The dry matter, N, and energy digestibility was higher (linear effect, p<0.001) with the increase in the dose of protected organic acid blends during 12 week. During week 6, a decrease (linear effect, p = 0.01) in fecal ammonia contents was observed with the increase in the level of protected organic acid blends on d 3 and d 5 of fermentation. Moreover, acetic acid emission decreased linearly (p = 0.02) on d7 of fermentation with the increase in the level of protected organic acid blends. During 12 weeks, linear decrease (p<0.001) in fecal ammonia on d 3 and d 5 and acetic acid content on d 5 of fermentation was observed with the increase in the level of protected organic acid blends. Supplementation of protected organic acid blends linearly increased the longissimus muscle area with the increasing concentration of organic acids. Moreover, color of meat increased (linear effect, quadratic effect, p<0.001, p<0.002 respectively) and firmness of meat showed quadratic effect (p = 0.003) with the inclusion of increasing level of protected organic acid in the diet. During the 6 week, increment in the level of protected organic acid blends decreased (linear effect, p = 0.01) Escherichia coli (E. coli) counts and increased (linear effect, p = 0.004) Lactobacillus counts. During 12-wk of experimental trial, feces from pigs fed diet supplemented with organic acid blends showed linear reduction (p<0.001) of E. coli counts and the tendency of linear increase (p = 0.06) in Lactobacillus count with the increase in the level of organic acid blends. In conclusion, 0.2% protected organic acids blends positively affected growth performance, nutrient digestibility, fecal gas emission and meat quality in finishing pigs without any adverse effects on blood parameters.

Effects of amino acid composition in pig diet on odorous compounds and microbial characteristics of swine excreta

  • Recharla, Neeraja;Kim, Kihyun;Park, Juncheol;Jeong, Jinyoung;Jeong, Yongdae;Lee, Hyunjeong;Hwang, Okhwa;Ryu, Jaehyoung;Baek, Youlchang;Oh, Youngkyun;Park, Sungkwon
    • Journal of Animal Science and Technology
    • /
    • v.59 no.12
    • /
    • pp.28.1-28.8
    • /
    • 2017
  • Background: Major amino acids in pig diets are Lys, Met, Thr, and Trp, but little is known about the requirements for the other essential amino acids, especially on odorous compounds and microbial characteristics in feces of growing-finishing pigs. To this end, different levels of amino acid composition added to diets to investigate the effects of amino acid composition on microbial characteristics and odorous compounds concentration. Methods: A total eight (n = 8) barrows (Landrace ${\times}$ Yorkshire ${\times}$ Duroc) with an average bodyweight of $89.38{\pm}3.3kg$ were individually fed diets formulated by Korean Feeding Standards 2007 (old version) or 2012 (updated with ideal protein concept) in metabolism crates with two replication. After 15-day adaptation period, fresh faecal samples were collected directly from pigs every week for 4 weeks and analysed for total volatile fatty acids (VFA), phenols and indoles by using gas chromatography. The nitrogen was determined by Kjeldahl method. Bacterial communities were detected by using a 454 FLX titanium pyrosequencing system. Results: Level of VFA tended to be greater in 2012 than 2007 group. Among VFAs, 2012 group had greater (p < 0.05) level of short chain fatty acids (SCFA) than control.Concentration of odorous compounds in feces was also affected by amino acid composition in pig diet. Levels of ammonium and indoles tended to be higher in 2012 group when compared with 2007 group.Concentration of phenols, p-cresol, biochemical oxygen demand, and total Kjeldahl nitrogen, however, were lower (P < 0.05) in 2012 treatment group compare to 2007. The proportion of Firmicute phylum were decreased, while the Bacteriodetes phylum proportion increased and bacterial genera includingCoprococcus, Bacillus, and Bacteroides increased (p < 0.05) in 2012 compare to 2007 group. Conclusion: Results from our current study indicates that well balanced amino acid composition reduces odor by modulating the gut microbial community. Administration of pig diet formulated with the ideal protein concept may help improve gut fermentation as well as reduce the odor causing compounds in pig manure.

Apoptotic Pathway Induced by Dominant Negative ATM Gene in CT-26 Colon Cancer Cells (CT-26 대장암 세포에서 Dominant Negative ATM 유전자에 의하여 유도되는 세포자멸사의 경로)

  • Lee, Jung Chang;Yi, Ho Keun;Kim, Sun Young;Lee, Dae Yeol;Hwang, Pyoung Han;Park, Jin Woo
    • Clinical and Experimental Pediatrics
    • /
    • v.46 no.7
    • /
    • pp.679-686
    • /
    • 2003
  • Purpose : Ataxia telangiectasia mutated(ATM) is involved in DNA damage responses at different cell cycle checkpoints, and signalling pathways associated with regulation of apoptosis in response to ionizing radiation(IR). However, the signaling pathway that underlies IR-induced apoptosis in ATM cells has remained unknown. The purpose of this study was, therefore, to investigate the apoptotic pathway that underlies IR-induced apoptosis in a CT-26 cells expressing dominant negative ATM (DN-ATM). Methods : We generated a replication-deficient recombinant adenovirus encoding the DN-ATM(Ad/DN-ATM) or control adenovirus encoding no transgene(Ad/GFP) and infected adenovirus to CT-26 cells. After infection, we examined apoptosis and apoptotic pathway by [$^3H$]-thymidine assay, DNA fragmentation, and Western immunoblot analysis. Results : DN-ATM gene served as the creation of AT phenotype in a CT-26 cells as revealed by decreased cell proliferations following IR. In addition, IR-induced apoptosis was regulated through the reduced levels of the anti-apoptotic protein Bcl-2, the increased levels of the apoptotic protein Bax, and the activation of caspase-9, caspase-3, and PARP. Conclusion : These results indicate that the pathway of IR-induced apoptosis in CT-26 cells expressing DN-ATM is mediated by mitochondrial signaling pathway involving the activation of caspase 9, caspase 3, and PARP.

Effects of Soil Fertilizers on Was Content, Contact Angle, Mineral Nutrient Content of Japanese Red Pine(Pinus densiflora Sieb. et Zucc.) Leaves and Soil Acidity of Japanese Red Pine Communities in Na (남산과 광릉지역 소나무림 토양시비가 소나무잎의 왁스함량, 접촉각 및 무기양이온 함량과 토양산도에 미치는 영향)

  • 최기영;이용범;조영렬;이경재
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.12 no.3
    • /
    • pp.255-262
    • /
    • 1996
  • This study was carried out to investigate the effects of soil fertilizers on wax content, contact angle, mineral nutrient content of Japanese red pine (Pinus densiflora Sieb, et Zucc.) leaves and soil acidity of Japanese red pine communities in Namsan and Kwangnung to see whether they can recover forest decline. Japenese red pine communities were treated with $Ca(OH)_2$, $Mg(OH)_2$, $Ca(OH)_2+Mg(OH)_2$+C.F.(compound fertilizer) in a randomized complete block design with 3 replication from November, 1990 through October, 1993. Wax content, contact angle value and mineral nutrient content of Japanese red pine leaves and soil pH of communities were measured and the results obtained are as follows: 1. Contact angle value and wax content of Japenese red pine leaves increased when the fertilizers were applied in soil. The order leaves grew, the smaller their contact angle values. 2. K and Ca contents of Japanese red pine leaves were higher in Namsan than in Kwangnung, whereas Mg content was higher in Kwangnung. K and Mg contents of the leaves increased with fertilization both in Namsan and Kwangnung. 3. Soil acidity of pH 4.2 ~ 4.3 was shown in Namsan and pH 4.6 ~ 4.9 in Kwangnung. No acidity changes were shown when the fertilizers were applied in soil. However with the lapse of the soil fertilizer application time, there was the indication that soil pH became higher in the fertilizer treatments than in the control.

  • PDF

Biochemical Analysis of Interaction between Kringle Domains of Plasminogen and Prion Proteins with Q167R Mutation

  • Lee, Jeongmin;Lee, Byoung Woo;Kang, Hae-Eun;Choe, Kevine K.;Kwon, Moosik;Ryou, Chongsuk
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.5
    • /
    • pp.1023-1031
    • /
    • 2017
  • The conformational change of cellular prion protein ($PrP^C$) to its misfolded counterpart, termed $PrP^{Sc}$, is mediated by a hypothesized cellular cofactor. This cofactor is believed to interact directly with certain amino acid residues of $PrP^C$. When these are mutated into cationic amino acid residues, $PrP^{Sc}$ formation and prion replication halt in a dominant negative (DN) manner, presumably due to strong binding of the cofactor to mutated $PrP^C$, designated as DN PrP mutants. Previous studies demonstrated that plasminogen and its kringle domains bind to PrP and accelerate $PrP^{Sc}$ generation. In this study, in vitro binding analysis of kringle domains of plasminogen to Q167R DN mutant PrP (PrPQ167R) was performed in parallel with the wild type (WT) and Q218K DN mutant PrP (PrPQ218K). The binding affinity of PrPQ167R was higher than that of WT PrP, but lower than that of PrPQ218K. Scatchard analysis further indicated that, like PrPQ218K and WT PrP, PrPQ167R interaction with plasminogen occurred at multiple sites, suggesting cooperativity in this interaction. Competitive binding analysis using $\small{L}$-lysine or $\small{L}$-arginine confirmed the increase of the specificity and binding affinity of the interaction as PrP acquired DN mutations. Circular dichroism spectroscopy demonstrated that the recombinant PrPs used in this study retained the ${\alpha}$-helix-rich structure. The ${\alpha}$-helix unfolding study revealed similar conformational stability for WT and DN-mutated PrPs. This study provides an additional piece of biochemical evidence concerning the interaction of plasminogen with DN mutant PrPs.

Development of CPLD technology mapping control algorithm for Sequential Circuit under Time Constraint (시간제약 조건하에서 순차 회로를 위한 CPLD 기술 매핑 제어 알고리즘 개발)

  • Youn, Chung-Mo;Kim, Jae-Jin
    • Journal of the Korean Institute of Telematics and Electronics T
    • /
    • v.36T no.4
    • /
    • pp.71-81
    • /
    • 1999
  • We propose a new CPLD(Complexity Programmable Logic Device) technology mapping algorithm improving run-time under time constraint. In our technology mapping algorithm, a given logic equation is constructed as the DAG(Directed Acyclic Graph) type, then the DAG is reconstructed by replicating the node that outdegree is more than or equal to 2. As a result, it makes delay time and the number of CLBs, run-time to be minimized. Also, after the number of multi-level is defined and cost of each nodes is calculated, the graph is partitioned in order to fit to k that is the number of OR term within CLB. The partitioned nodes are merged through collapsing and bin packing is performed in order to fit to the number of OR term within CLB(Configurable Logic Block). In the results of experiments to MCNC circuits for logic synthesis benchmark, we can shows that proposed technology mapping algorithm reduces run-time and the number of CLBs much more than the TEMPLA.

  • PDF

The Role of Noncoding Region in Hantaan Viral S Genome for Expression of Nucleocapsid Protein (한탄바이러스 Nucleocapsid Protein 발현에 있어 S Genome 내 Noncoding Region의 역할)

  • Yu, Cheong-Hee;Lee, Yeon-Seung;Lee, Ho-Dong;Park, Chan;Park, Keun-Yong;Lee, Pyung-Woo
    • The Journal of Korean Society of Virology
    • /
    • v.30 no.1
    • /
    • pp.39-49
    • /
    • 2000
  • The genome of Hantaan virus, the prototype of the hantavirus genus, is composed of three segmented, single stranded negative sense RNA genome. The 5' and 3' termini of the Hantaan virus RNA genome contain noncoding regions (NCRs) that are highly conserved and complementary to form panhandle structures. There are some reports that these NCRs seems to control gene expression and viral replication in influenza virus and vesicular stomatitis virus. In this study, we examined whether NCRs in Hantaan virus playa role in expression of the viral nucleocapsid protein (Np) and foreign (luciferase) gene. The 5' and/or 3' NCR-deleted mutants were constructed and analysed. The Np expression of 5' NCR-deleted clone was similar to that of the clone containing full S genome. In the case of 3' NCR-deleted clone, it showed 40% reduction. To investigate the role of NCR in foreign gene expression, the clones which are replaced ORF of Hantaan viral Np gene with that of luciferase gene were constructed. The results were similar to those of the experiments using Np gene. These results suggest that 3' NCR is more important than 5' NCR in protein expression. To find out a critical region of 3' NCR in protein expression, several clones with a deleted part of 3' NCR were constructed and analyzed. The deletion of the conserved region in 3' NCR showed $20{\sim}30%$ decrease in Np expression. However there were no change in luciferase activities between clones with or without non-conserved region of 3' NCR. These results suggest that the 3' NCR of Hantaan virus S genome, especially conserved region in 3' NCR, plays an important role in the expression of Hantaan viral Np and foreign genes.

  • PDF

Intracellular Signaling Pathway for Host Defense Mechanisms against Piscine Nervous Necrosis Virus (NNV) (어류신경괴사증바이러스(nervous necrosis virus, NNV) 감염에 따른 숙주의 방어기전관련 세포신호전달)

  • Kim, Jong-Oh
    • Journal of Life Science
    • /
    • v.30 no.4
    • /
    • pp.402-409
    • /
    • 2020
  • Nervous necrosis virus (NNV) contains a bi-segmented viral genome, RNA1 (3.4 kb, RdRp), and RNA2 (1.4 kb, capsid protein) in a small particle (25 nm). Despite its extremely compact size, NNV has caused serious damage by infecting approximately 120 fish species worldwide since it was first reported in the late 1980s. In order to minimize the damage caused by NNV infection and develop effective vaccines, it is necessary to understand the intra cellular signaling system according to NNV infection. NNV infection induces cell cycle arrest at the G1 phase via the p53-dependent pathway to use the cellular system for its replication. Otherwise, host cells recognize NNV infection through the RIG-1-like receptor (RLR) signaling pathway to control the virus and infected cells, and then ISGs required for antiviral action are activated via the IFN signaling pathway. Moreover, apoptosis of infected cells is triggered by the unfolded protein response (UPR) through ER stress and mitochondria-mediated cell death. Cell signaling studies on the NNV infection mechanisms are still at an early stage and many pathways have yet to be identified. Understanding the various disease-specific cellular signaling systems associated with NNV infection is essential for rapid and accurate diagnosis and vaccine development.