• Title/Summary/Keyword: replacement area ratio

Search Result 114, Processing Time 0.023 seconds

Behavior of Soft Ground Improved with Fully-Partly Penetrated Sand Compaction Piles (관통-미관통 모래다짐말뚝으로 개량된 연약지반의 거동)

  • Jeong, Geunchae;Heo, Yol;Bae, Wooseok
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.9
    • /
    • pp.91-99
    • /
    • 2012
  • This study describes the investigation based on centrifuge model tests for the clay ground improved by sand compaction pile. In order to clarify the failure behavior of composite ground improved by partly and fully penetrated SCPs. And, in order to compare the effect of the penetration ratio and the replacement area ratio, nine of the centrifuge tests were carried out. From the test results, settlement reduce ratio in the fully penetrated SCPs ground is bigger than that in the partly penetrated SCPs ground. It is also evaluated that angle of the failure of composite ground improved by SCP are 26, 25, $34^{\circ}$ for As=10%, 22, $29^{\circ}$ for As=30%. And as a result of rigid loading tests, surface displacement decreases linearly with the partly penetration ratio increased.

The Behavior of Rammed Aggregate Piers (RAP) in Soft Ground (I) (연악지반의 쇄석다짐말뚝에 대한 거동 분석 (I))

  • Bae, Kyung-Tae;Lee, Chong-Kyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.4
    • /
    • pp.169-183
    • /
    • 2007
  • Numerical analysis was performed to investigate the behavior of rammed aggregate piers (RAP) in soft ground with various interface conditions, area replacement ratio, aspect ratio and surcharge loads of pile and soil. And field modulus load test was carried out to predict the input parameters. Field prototype (unit cell) tests are in progress to compare the result of numerical analysis. Also a modified load transfer equation of RAP on soft foundation was proposed. According to the results, the behavior of RAP depended on such as interface conditions, settlement characteristics (free strain) and stress concentration ratio. On the other hand, maximun stress concentration ratio increased as area replacement ratio and aspect ratio increased, and it was remarkably affected by surcharge loads.

Evaluation of Liquefaction Mitigation of RAP (Rammed Aggregate Piers) using Shaking Table Test (진동대 시험을 이용한 쇄석다짐말뚝의 액상화 저감효과에 관한 연구)

  • Kim, Hyun-Jung;Bae, Kyung-Tae;Kim, Ji-Hwan;Cho, Kook-Hwan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1193-1198
    • /
    • 2008
  • Shaking table tests were performed to investigate the response of liquefaction mitigation of rammed aggregate piers(RAP) on soft ground. The displacements of the soft ground reinforced by RAP under area replacement ratio 7, 14, 28% during seismic loading were measured. The result of tests showed that effects of liquefaction mitigation were affected various area replacement ratios and ground acceleration on RAP systems.

  • PDF

Characteristics of Bearing Capacity and Stress Concentration of Clay Ground Improved with Sand Compaction Piles (SCP 보강 점성토 지반의 지지력 및 응력분담특성)

  • Yoo Nam-Jae;Park Byung-Soo;Jeong Gil-Soo;Koh Kyung-Hwan;Kim Ji-Sung
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.1
    • /
    • pp.81-91
    • /
    • 2005
  • This paper is the results of experimental and numerical works on the investigating design factors influencing the bearing capacity, the ratio of stress concentration, and the failure mechanism of the clay ground improved with sand compaction piles (SCP). In order to find the behavior of the clay ground improved with SCP, extensive centrifuge model experiments were carried out for each of the SCP replacement ratio of 20, 40, and $70\%$, the non-plastic fine contents in sand of 5, 10, and $15\%$, and the ratio of the improved width to the loaded area (W/B) of 1, 2, and 3. The commertially available software of FEM, CRISP, was used to analyze test results by performing numerical estimations. In these numerical analyses the sand compaction piles and the clay ground were simulated as a linear elastic and plastic constitutive model and the modified Cam-clay model, based on Critical State Soil Mechanics, respectively.

Service life evaluation of HPC with increasing surface chlorides from field data in different sea conditions

  • Jong-Suk Lee;Keun-Hyeok Yang;Yong-Sik Yoon;Jin-Won Nam;Seug-Jun Kwon
    • Advances in concrete construction
    • /
    • v.16 no.3
    • /
    • pp.155-167
    • /
    • 2023
  • The penetrated chloride in concrete has different behavior with mix proportions and local exposure conditions, even in the same environments, so that it is very important to quantify surface chloride contents for durability design. As well known, the surface chloride content which is a key parameter like external loading in structural safety design increases with exposure period. In this study, concrete samples containing OPC (Ordinary Portland Cement), GGBFS (Ground Granulated Blast Furnace Slag), and FA (Fly Ash) had been exposed to submerged, tidal, and splash area for 5 years, then the surface chloride contents changing with exposure period were evaluated. The surface chloride contents were obtained from the chloride profile based on the Fick's 2nd Law, and the regression analysis for them was performed with exponential and square root function. After exposure period of 5 years in submerged and tidal area conditions, the surface chloride content of OPC concrete increased to 6.4 kg/m3 - 7.3 kg/m3, and the surface chloride content of GGBFS concrete was evaluated as 7.3 kg/m3 - 11.5 kg/m3. In the higher replacement ratio of GGBFS, the higher surface chloride contents were evaluated. The surface chloride content in FA concrete showed a range of 6.7 kg/m3 to 9.9 kg/m3, which was the intermediate level of OPC and GGBFS concrete. In the case of splash area, the surface chloride contents in all specimens were from 0.59 kg/m3 to 0.75 kg/m3, which was the lowest of all exposure conditions. Experimental constants available for durability design of chloride ingress were derived through regression analysis over exposure period. In the concrete with GGBFS replacement ratio of 50%, the increase rate of surface chloride contents decreased rapidly as the water to binder ratio increased.

Shear behavior of composite frame inner joints of SRRC column-steel beam subjected to cyclic loading

  • Ma, Hui;Li, Sanzhi;Li, Zhe;Liu, Yunhe;Dong, Jing;Zhang, Peng
    • Steel and Composite Structures
    • /
    • v.27 no.4
    • /
    • pp.495-508
    • /
    • 2018
  • In this paper, cyclic loading tests on composite frame inner joints of steel-reinforced recycled concrete (SRRC) column-steel beam were conducted. The main objective of the test was to obtain the shear behavior and analyze the shear strength of the joints. The main design parameters in the test were recycled coarse aggregate (RCA) replacement percentage and axial compression ratio. The failure process, failure modes, hysteresis curves and strain characteristics of the joints were obtained, and the influences of design parameters on the shear strength of the joints have been also analysed in detail. Results show that the failure modes of the joints area are typical shear failure. The shear bearing capacity of the joints maximally decreased by 10.07% with the increase in the RCA replacement percentage, whereas the shear bearing capacity of the joints maximally increased by 16.6% with the increase in the axial compression ratio. A specific strain analysis suggests that the shear bearing capacity of the joints was mainly provided by the three shear elements of the recycled aggregate concrete (RAC) diagonal compression strut, steel webs and stirrups of the joint area. According to the shear mechanism and test results, the calculation formulas of the shear bearing capacity of the three main shear elements were deduced separately. Thus, the calculation model of the shear bearing capacity of the composite joints considering the adverse effects of the RCA replacement percentage was established through a superposition method. The calculated values of shear strength based on the calculation model were in good agreement with the test values. It indicates that the calculation method in this study can reasonably predict the shear bearing capacity of the composite frame inner joints of SRRC column-steel beam.

Analysis of Sand Compaction Piles Under Flexible Surcharge Loading (연성하중을 받는 모래다짐말뚝(SCP)의 거동분석)

  • 홍의준;김재권;정상섬;김수일
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.4
    • /
    • pp.223-233
    • /
    • 2003
  • Sand compaction pile (SCP) is one of the ground improvement techniques which are being used for not only accelerating consolidation but also increasing bearing capacity of loose sands or soft clay grounds. In this study, laboratory model tests and 3-D finite element analyses were performed to investigate the interaction between sand compaction piles and surrounding soft soils. Based on the results obtained, as the area replacement ratio increases, the stress concentration ratio increases at the pile point, the settlement decreases, and the relative displacement between column and soil also decreases. It is also found that numerical study is illustrated by good comparison with model test results, and the numerical analysis revealed slip effects which could not be specifically identified in the model tests.

Could Urinary Copper/Zinc Ratio Be a Newer Tool to Replace 24-Hour Urinary Copper Excretion for Diagnosing Wilson Disease in Children?

  • Fahmida Begum;Khan Lamia Nahid;Tahmina Jesmin;Md. Wahiduzzaman Mazumder;Md. Rukunuzzaman
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.27 no.1
    • /
    • pp.53-61
    • /
    • 2024
  • Purpose: Although the 24-hours urinary copper excretion is useful for the diagnosis of Wilson disease (WD), there are practical difficulties in the accurate and timed collection of urine samples. The purpose of this study was to verify if the spot morning urinary Copper/Zinc (Cu/Zn) ratio could be used as a replacement parameter of 24-hours urinary copper excretion in the diagnosis of WD. Methods: A cross-sectional study was conducted at the Department of Pediatric Gastroenterology and Nutrition, Bangabandhu Sheikh Mujib Medical University (BSMMU), Dhaka, Bangladesh, from June 2019 to May 2021 on 67 children over three years of age who presented with liver disease. Twenty-seven children who fulfilled the inclusion criteria for WD were categorized into the test group, and the remaining forty children were considered to have non-Wilsonian liver disease and were categorized into the control group. Along with other laboratory investigations, spot morning urinary samples were estimated for the urinary Cu/Zn ratio in all patients and were compared to the 24-hour urinary copper excretion. The diagnostic value of the Cu/Zn ratio was then analyzed. Results: Correlation of spot morning urinary Cu/Zn ratio with 24-hours urinary copper excretion was found to be significant (r=0.60). The area under ROC curve with 95% confidence interval of morning urinary Cu/Zn ratio measured using 24-hours urine sample was 0.84 (standard error, 0.05; p<0.001). Conclusion: Spot morning urinary Cu/Zn ratio seems to be a promising parameter for the replacement of 24-hours urinary copper excretion in the diagnosis of WD.

Effect of Superplasticizers and Admixtures on the Fluidity and Compressive Strength Development of Cementless Mortar Using Hwangtoh Binder (혼화제·재가 무시멘트 황토 모르타르의 유동성 및 압축강도 발현에 미치는 영향)

  • Yang, Keun-Hyeok;Hwang, Hey-Zoo;Kim, Sun-Young;Song, Jin-Gyu
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.6 s.96
    • /
    • pp.793-800
    • /
    • 2006
  • This paper reports test results to assess the influence of superplasticizers and different admixture on the flow and compressive strength development of cementless mortar using developed hwangtoh binder. Test specimens were classified into four groups: series for I the mixing ratio of superplasticizers, series II for a kind and replacement level of admixtures according to the variation of water/hwangtoh binder ratio, series III for the specific surface area and replacement level of ground granulated blast-furnace slag and series IV for the replacement level of powered superplasticizer agent developed to improve slump loss of concrete. The proper replacement level of each admixture is proposed for enhancement the flow and compressive strength of the hwangtoh binder mortar.

A Study on the Properties of Foamed Concrete with Plaster Using the Experimental Design (실험계획법을 이용한 석고 혼입 기포콘크리트의 특성에 관한 연구)

  • Lee, Sang-An;Kim, Wha-Jung;Yoon, Sang-Chun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.6
    • /
    • pp.130-137
    • /
    • 2013
  • This research was performed through the experimental design to get the statistical analysis on foamed concrete mixed plaster with hydrogen peroxide. In this experiment, we set the ratio of each material, which part of lightweight concrete, as experimental factors and evaluated on the mechanical properties by statistical analysis for response variables obtained from experiments. Experimental factors are plaster replacement, water binder ratio, and hydrogen peroxide ratio. Response variables are dry density, compressive strength, and flexural strength. Mixing design of the foamed concrete set up a total of 15 experimental points by Box-Behnken (BB) method of the response surface analysis. Thus, the results of a study were summarized as follows. Values of the probability in experimental factors (plaster replacement, water binder ratio and hydrogen peroxide ratio) on the response variables were estimated to be significant at the 95% of confidence limit. On response surface analysis for dry density of foamed concrete, water binder ratio and hydrogen peroxide ratio were estimated to be significant (${\alpha}$ = 0.05), and the relationship between the amount of void and the water content for dry density is inverse proportional. On response surface analysis for the compressive strength of foamed concrete, water binder ratio, hydrogen peroxide ratio and (hydrogen peroxide ratio)$^2$ was estimated to be significant (${\alpha}$ = 0.05). On response surface analysis for the flexural strength of foamed concrete, water binder ratio, hydrogen peroxide ratio was estimated to be significant (${\alpha}$ = 0.05). Through multi response surface analysis, we found the optimal area that meets performance goals.