• Title/Summary/Keyword: repetition rate

Search Result 435, Processing Time 0.026 seconds

Effect of Laser Pulse Repetition Rate on the Electrical Properties of $Pb(Zr_{0.48}Ti_{0.52})O_3$ (PZT) Thin Films grown by Pulsed Laser Deposition (펄스 레이저 증착법에 의해 제작된 Laser pulse repetition rate의 변화에 따른 $Pb(Zr_{0.48}Ti_{0.52})O_3$ (PZT) 박막의 전기적 특성)

  • Li, Dong-Hua;Lee, Sang-Yeol
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.11-12
    • /
    • 2005
  • [ $Pb(Zr_{0.48}Ti_{0.52})O_3$ ] (PZT) thin films were deposited on Pt(111)/Ti/$SiO_2$/Si substrates by pulsed laser deposition. In order to study the effect of different laser pulse repetition rate on the dielectric and ferroelectric properties of PZT thin films,2 Hz and 5 Hz of laser pulse repetition rate were selected. We compared the results of XRD pattern, dielectric constant and hysteresis characteristics. From the experimental data, we found that the electrical properties of PZT thin films which grown ar 2 Hz of laser pulse repetition rate were better than those which grown at 5 Hz of laser pulse repetition rate.

  • PDF

High Power 1.83 GHz Femtosecond Yb-doped Fiber Laser Incorporating Repetition Rate Multipliers

  • In Chul Park;Eun Kyung Park;Ye Jin Oh;Hoon Jeong;Ji Won Kim;Jeong Sup Lee
    • Current Optics and Photonics
    • /
    • v.7 no.6
    • /
    • pp.732-737
    • /
    • 2023
  • A high-power Yb-doped femtosecond (fs) fiber laser at a repetition rate of 1.83 GHz is reported. By employing a 5-stage repetition rate multiplier, the repetition rate of the mode-locked master oscillator was multiplied from 57.1 MHz to 1.83 GHz. The ultrashort pulse output at 1.83 GHz was amplified in a two-stage Yb-doped fiber amplifier, leading to >100 W of fs laser output with a pulse duration of 290 fs. The theoretical pulse width along the fiber was simulated, showing that it was in good agreement with experimental results. Further improvement in power scaling is discussed.

Comparison of Number of Repetitions and Repetition Rate in 5 Sets of 65%1RM Bench Press and Biceps Curl Exercise

  • Kim, Ki Hong
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.14 no.4
    • /
    • pp.163-172
    • /
    • 2022
  • The purpose of this study is to investigate the changes in the number of repetitions and the repetition rate according to the exercise mode when performing 65%1RM resistance exercise at the 1-minute rest interval and the 3-minute rest interval. Sixteen healthy male subjects were treated with Bench press and Biceps curl of 65%1RM intensity at 1 and 3 minute rest intervals. The number of repetitions for each set of 1 minute rest interval showed a significant decrease from 1set to 5set in bench press. biceps curl showed a significant decrease from 1set to 4set. The repetition rate according to the exercise mode with a 1-minute rest interval showed a significant difference from 2sets to 4sets. In the repetition rate for each set, bench press showed a significant decrease from 1set to 5set. biceps curl showed a significant decrease from set 1 to set 4. The number of repetitions according to the exercise mode with a 3-minute rest interval showed a significant difference from 2sets to 5sets. In the number of repetitions for each set, bench press showed a significant decrease from 1set to 5set. biceps curl showed a significant decrease from 1set to 4set. The repetition rate according to the exercise mode with a 3-minute rest interval showed a significant difference from 2sets to 5sets. In the repetition rate for each set, bench press showed a significant decrease from 1 set to 5 sets. biceps curl showed a significant decrease from 1set to 4set. In summary, the decrease in the number of repetitions according to the set progression in the resistance exercise of the endurance depends on the exercise mode, and the increase of the rest interval or the decrease of the weight-intensity should be considered when aiming for more exercise.

A Study on Destruction Characteristics of BJT (Bipolar Junction Transistor) at Different Pulse Repetition Rate (다양한 펄스 반복률에서의 NPN BJT (Bipolar Junction Transistor)의 파괴 특성에 관한 연구)

  • Bang, Jeong-Ju;Huh, Chang-Su;Lee, Jong-Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.3
    • /
    • pp.167-171
    • /
    • 2014
  • This paper examines the destruction behavior of NPN BJT (bipolar junction transistor) by repetition pulse. The injected pulse has a rise time of 1 ns and the maximum peak voltage of 2 kV. Pulse was injected into the base of transistor. Transistor was destroyed, current flows even when the base power is turned off. Cause the destruction of the transistor is damaged by heat. Breakdown voltage of the transistor is 975 V at single pulse, and repetition pulse is 525~575 V. Pulse repetition rate increases, the DT (destruction threshold) is reduced. Pulse Repetition rate is high, level of transistor destruction is more serious.

Study on low-k wafer engraving processes by using UV pico-second laser (Low-k 웨이퍼 레이저 인그레이빙 특성에 관한 연구)

  • Nam, Gi-Jung;Moon, Seong-Wook;Hong, Yoon-Seok;Bae, Han-Seong;Kwak, No-Heung
    • Proceedings of the Korean Society of Laser Processing Conference
    • /
    • 2006.11a
    • /
    • pp.128-132
    • /
    • 2006
  • Low-k wafer engraving process has been investigated by using UV pico-second laser with high repetition rate. Wavelength and repetition rate of laser used in this study are 355nm and 80MHz, respectively. Main parameters of low-k wafer engraving processes are laser power, work speed, assist gas flow rate, and protective coating to eliminate debris. Results show that engraving qualities of low-k layer by using UV pico-second pulse width and high repetition rate had better kerf edge and higher work speed, compared to one by conventional laser with nano-second pulse width and low repetition rate in the range of kHz. Assist gas and protective coating to eliminate debris gave effects on the quality of engraving edge. Total engraving width and depth are obtained less than $20{\mu}m$ and $10{\mu}m$ at more than 500mm/sec work speed, respectively. We believe that engraving method by using UV pico-second laser with high repetition rate is useful one to give high work speed of laser material process.

  • PDF

A Study on High-Repetition Rate Optical-Pulse for Loop-Mirror (루프 미러를 이용한 고 반복률 펄스 발생에 관한 연구)

  • Jeoung Chan-gwoun;Kim Sun-youb;Kang Young-jin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.5
    • /
    • pp.1117-1122
    • /
    • 2005
  • This paper is studied the high-repetition rate optical-pulse stream generation using optical loop mirror coupler. With the recent development of the ultrahigh-speed optical time division multiplexed system, hish-repetition rate optical-pulse stream generation is necessary. This is different from conventional approaches, which use fiber or integrated waveguide delay line circuits. The high-repetition-rate optical-pulse multiplication phenomenon occurs when the optical pulse's spectral width is greater than the transfer bandwidth of the coupler used. From the analysis, the output repetition rate can be controlled by using fiber couplers with different equivalent transfer bandwidths. The pulse separation spacing is controlled by number of cascaded coupler in optical loop mirror coupler scheme.

A Study on High-Repetition Rate Optical-Pulse for OTDM System Using Fiber Loop Mirror (OTDM 시스템을 위한 광섬유 루프 미러를 이용한 고 반복률 펄스 발생에 관한 연구)

  • 최원석;정찬권;김선엽;강영진
    • Proceedings of the IEEK Conference
    • /
    • 2000.06b
    • /
    • pp.330-333
    • /
    • 2000
  • With the recent development of the ultrahigh-speed optical time division multiplexed system, high-repetition rate optical-pulse stream generation is necessary. This is different from conventional approaches, which use fiber or integrated waveguide delay line circuits. The high-repetition-rate optical-pulse multiplication phenomenon occurs when the optical pulse's spectral width is greater than the transfer bandwidth of the coupler used. From the analysis, the output repetition rate can be controlled by using fiber couplers with different equivalent transfer bandwidths. The pulse seperation spacing is controlled by number of cascaded coupler in optical loop mirror coupler scheme.

  • PDF

The Study on Arc Suppression of Line-to-Line Electrodes in Air and Removal of the Metaloxide (선대 선 전극방식의 대기압 아크억제 대책 및 Metaloxide 제거에 관한 연구)

  • 정종한;김문환
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.5
    • /
    • pp.264-267
    • /
    • 2004
  • Recently the pulsed power systems have been widely used in many fields such as E/P(Electrostatic Precipitator), DeNOx/DeSOx power systems, ozone generators and power sources of the laser beam. In this paper, we studied various electrical characteristics for arc suppression of line-to-line electrodes in air and removal of the metaloxide using our pulsed power system. To obtain high efficiency of the pulsed power system, we repeatedly experimented and tested their characteristics. by adjusting electrode length of the load. As a result, when the value of the electrode length and pulse repetition rate were changed at the load, the value of the arc voltage changed at the electrode load. In conclusion, we controlled arc voltage of the load by ,changing electrode length and pulse repetition rate. Also. we stydied removal area of the metaloxide using area discharge according to pulse repetition rate.

Development of Operation Software for High Repetition rate Satellite Laser Ranging (고반복율 인공위성 레이저추적을 위한 운영 소프트웨어 개발)

  • Sung, Ki-Pyoung;Choi, Eun-Jung;Lim, Hyung-Chul;Jung, Chan-Gyu;Kim, In-Yeong;Choi, Jae-Seung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.12
    • /
    • pp.1103-1111
    • /
    • 2016
  • Korea Astronomy and Space Science Institute (KASI) has been operating SLR (Satellite Laser Ranging) system with 2kHz repetition rate for satellite precise orbit and spin determination as well as space geodesy. But the SLR system was improved to be capable of laser ranging with high repetition rate, up to 10kHz by developing new operation software and novel range gate generator, called HSLR-10. The HSLR-10 will contribute to the accurate spin rate determination of geodetic satellites and geodetic research due to its largest repetition rate in the world. In this study, the development methodology and configuration of operation software are addressed, and its validation results are also presented.

Design and Development of High-Repetition-Rate Satellite Laser Ranging System

  • Choi, Eun-Jung;Bang, Seong-Cheol;Sung, Ki-Pyoung;Lim, Hyung-Chul;Jung, Chan-Gyu;Kim, In-Yeung;Choi, Jae-Seung
    • Journal of Astronomy and Space Sciences
    • /
    • v.32 no.3
    • /
    • pp.209-219
    • /
    • 2015
  • The Accurate Ranging System for Geodetic Observation - Mobile (ARGO-M) was successfully developed as the first Korean mobile Satellite Laser Ranging (SLR) system in 2012, and has joined in the International Laser Ranging Service (ILRS) tracking network, DAEdeoK (DAEK) station. The DAEK SLR station was approved as a validated station in April 2014, through the ILRS station "data validation" process. The ARGO-M system is designed to enable 2 kHz laser ranging with millimeter-level precision for geodetic, remote sensing, navigation, and experimental satellites equipped with Laser Retro-reflector Arrays (LRAs). In this paper, we present the design and development of a next generation high-repetition-rate SLR system for ARGO-M. The laser ranging rate up to 10 kHz is becoming an important issue in the SLR community to improve ranging precision. To implement high-repetition-rate SLR system, the High-repetition-rate SLR operation system (HSLR-10) was designed and developed using ARGO-M Range Gate Generator (A-RGG), so as to enable laser ranging from 50 Hz to 10 kHz. HSLR-10 includes both hardware controlling software and data post-processing software. This paper shows the design and development of key technologies of high-repetition-rate SLR system. The developed system was tested successfully at DAEK station and then moved to Sejong station, a new Korean SLR station, on July 1, 2015. HSLR-10 will begin normal operations at Sejong station in the near future.