• 제목/요약/키워드: repeated-batch fermentor culture

검색결과 3건 처리시간 0.022초

Development of a Practical and Cost-Effective Medium for Bioethanol Production from the Seaweed Hydrolysate in Surface-Aerated Fermentor by Repeated-Batch Operation

  • Lee, Sang-Eun;Lee, Ji-Eun;Shin, Ga-Young;Choi, Woon-Yong;Kang, Do-Hyung;Lee, Hyeon-Yong;Jung, Kyung-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • 제22권1호
    • /
    • pp.107-113
    • /
    • 2012
  • To develop a practical and cost-effective medium for bioethanol production from the hydrolysate of seaweed Sargassum sagamianum, we investigated the feasibility and performance of bioethanol production in CSL (corn-steep liquor)-containing medium, where yeast Pichia stipitis was used and the repeated batch was carried out in a surface-aerated fermentor. The optimal medium replacement time during the repeated operation was determined to be 36 h, and the surface aeration rates were 30 and 100 ml/min. Under these conditions, the repeated-batch operation was successfully carried out for 6 runs (216 h), in which the maximum bioethanol concentrations reached about 11-12 g/l at each batch operation. These results demonstrated that bioethanol production could be carried out repeatedly and steadily for 216 h. In these experiments, the total cumulative bioethanol production was 57.9 g and 58.0 g when the surface aeration rates were 30 ml/min and 100 ml/min, respectively. In addition, the bioethanol yields were 0.43 (about 84% of theoretical value) and 0.44 (about 86% of theoretical value) when the surface aeration rates were 30 ml/min and 100 ml/min, respectively. CSL was successfully used as a medium ingredient for the bioethanol production from the hydrolysate of seaweed Sargassum sagamianum, indicating that this medium may be practical and cost-effective for bioethanol production.

혼합 젖산균을 이용한 밀가루 용액의 반복 유가식 발효 (Repeated Fed-Batch Fermentation of Wheat Flour Solution by Mixed Lactic Acid Bacteria)

  • 김상용;노봉수;오덕근
    • 한국식품과학회지
    • /
    • 제29권2호
    • /
    • pp.343-347
    • /
    • 1997
  • Lactobacillus brevis, L. fermentum과 L. plantarum의 혼합젖산균을 사용하여 배양조건이 밀가루 용액의 발효에 미치는 영향을 살펴보았다. 온도변화에 따른 pH와 총적정산도의 변화를 살펴본 결과 pH의 감소와 총적정산도의 증가가 가장 크게 나타난 $35^{\circ}C$를 밀가루 발효의 최적온도로 선정하였다. 5L발효조에서 질소가스를 1.0 vvm으로 첨가한 혐기적 조건보다 공기를 첨가한 호기적 조건에서 총적정산도의 증가와 pH의 감소가 더 크게 나타났다. 최적 산소공급 조건을 찾기 위하여 통기량을 1.0 vvm으로 고정하고 교반속도를 달리하여 밀가루 용액의 발효한 결과 총적정산도가 가장 크게 나타난 교반속도 250 rpm에 해당되는 산소 전달속도상수 $60\;hr^{-1}$에서 최적이었다. 선정된 최적 배양조건에서 밀가루 발효액의 생산성을 높이기 위하여 반복비율을 변화시키면서 pH-stat를 이용한 반복 유가식 배양을 수행하였다. 반복비율이 증가할수록 반복 간격시간은 증가하였으나 밀가루 발효의 최대 작동시간은 감소하였다. 최적 반복비율을 결정하기 위하여 단위시간 당 배양부피 당 생산된 밀가루 발효액의 부피와 최대가동시간 동안 배양부피 당 생산된 총 밀가루 발효액의 부피를 살펴본 결과 20%의 반복비율에서 최대값을 나타내었다. 혼합젖산균을 이용한 밀가루용액의 유가식 배양에서 최적조건은 배양온도 $35^{\circ}C$, 통기량 1.0 vvm, 산소전달속도 $60\;hr^{-1}$, 반복비율 20%로 나타났다.

  • PDF

Ethanol Production from Glycerol Using Immobilized Pachysolen tannophilus During Microaerated Repeated-Batch Fermentor Culture

  • Cha, Hye-Geun;Kim, Yi-Ok;Choi, Woon Yong;Kang, Do-Hyung;Lee, Hyeon-Yong;Jung, Kyung-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권3호
    • /
    • pp.366-374
    • /
    • 2015
  • Herein, we established a repeated-batch process for ethanol production from glycerol by immobilized Pachysolen tannophilus. The aim of this study was to develop a more practical and applicable ethanol production process for biofuel. In particular, using industrial-grade medium ingredients, the microaeration rate was optimized for maximization of the ethanol production, and the relevant metabolic parameters were then analyzed. The microaeration rate of 0.11 vvm, which is far lower than those occurring in a shaking flask culture, was found to be the optimal value for ethanol production from glycerol. In addition, it was found that, among those tested, Celite was a more appropriate carrier for the immobilization of P. tannophilus to induce production of ethanol from glycerol. Finally, through a repeated-batch culture, the ethanol yield (Ye/g) of 0.126 ± 0.017 g-ethanol/g-glycerol (n = 4) was obtained, and this value was remarkably comparable with a previous report. In the future, it is expected that the results of this study will be applied for the development of a more practical and profitable long-term ethanol production process, thanks to the industrial-grade medium preparation, simple immobilization method, and easy repeated-batch operation.