• Title/Summary/Keyword: repeated-batch cultures

Search Result 11, Processing Time 0.024 seconds

Production of Lactococcal Bacteriocin using Repeated-Batch and Continuous Cultures

  • Yoo, Jin-Young
    • Journal of Microbiology and Biotechnology
    • /
    • v.2 no.4
    • /
    • pp.284-287
    • /
    • 1992
  • Repeated-batch and continuous cultures of Lactococcus sp. 1112-1 were carried out for bacteriocin production using a glucose-casein medium. Repeated-batch culture did not efficiently enhanced the bacteriocin production. Continuous production was possible at the dilution rate of 0.4 $h^{-1}$. Maximum specific production rate ($Q^p$), bacteriocin production and biomass at the dilution rate were 347, 136 IU/g/h, 2, 121 IU/ml and 2.45 g/L, respectively.

  • PDF

Production of Lactic Acid from Cheese Whey by Repeated Batch and Continuous Cultures

  • Kim, Hyang-Ok;Kim, Jin-Nam;Wee, Young-Jung;Ryu, Hwa-Won
    • 한국생물공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.319-323
    • /
    • 2005
  • This study is concerned with development of efficient culture methods for lactic acid fermentation of Lactobacillus sp. RKY2. The cell-recycle repeated batch fermentation using cheese whey and corn steep liquor as raw materials was tried in order to further enhance the productivity of lactic acid. In addition, fermentation efficiencies could be considerably enhanced by cell-recycle continuous culture. Through the cell-recycle repeated batch fermentation, lactic acid productivity was maximized to 6.34 $g/L{\cdot}h,$ which corresponded to 6.2 times higher value than that of the batch fermentation. During the cell-recycle continuous fermentation, the last dry cell weight at the end of fermentation could be increased to 25.3 g/L.

  • PDF

Production of Lignin-Degrading Enzymes by White Rot Fungi Immobilized in a Rotating Bioreactor (회전생물반응기에 고정화된 백색부후균에 의한 리그닌 분해효소의 생산)

  • 조무환;류원률
    • KSBB Journal
    • /
    • v.17 no.1
    • /
    • pp.14-19
    • /
    • 2002
  • The objective of this study is to investigate optimum condition for lignin peroxidase production by white rot fungi Phanerochaete chysosporium IFO 31249 immobilized in a rotating bioreactor. The maximum lignin peroxidase activity of batch culture in rotating bioreactor was 300 U/L. The optimum rotating speed and packing ratio of support for lignin peroxidase production in a rotating bioreactor were 1 rpm and 20%, respectively. The optimum concentration of $MnSO_4$$\cdot$$H_2O$ for manganese-dependent peroxidase production in a rotating bioreactor was 50 ppm. The sufficient supply of oxygen was the most important factor to achieve maximum lignin peroxidase production. It was possible to produce lignin peroxidase (LiP) and manganese-dependent peroxidase (MnP) for at least 3 times successive repeated-batch cultures, respectively.

The Production of Lincomycin by Repeated Batch Cultures of Immobilized Streptomyces lincolnensis (고정화된 Streptomyces lincolnensis의 반복 회분식 배양에 의한 린코마이신 생산)

  • Kim, Chang-Joon;Chun, Gie-Taek;Chang, Yong-Keun;Kim, Sung-Bae
    • KSBB Journal
    • /
    • v.21 no.5
    • /
    • pp.384-388
    • /
    • 2006
  • The production stability of high-yielding mutants of Streptomyces lincolnensis immobilized on celite beads was examined in repeated batch cultures. We also explored the feasibility of immobilization of vegetative mycelial cells on pre-wetted celite beads, which is practical method for cell immobilization. Repeated transfer of immobilized cells into fresh medium every 10 days increased productivity of immobilized cells and maximum concentration of lincomycin, 1007 $({\pm}256)$ mg/L, was obtained at the end of the ninth cycle. A 1.4-fold higher productivity was obtained in immobilized-cell culture than that obtained by suspended-cell culture. When pre-wetted beads were inoculated with vegetative mycelia and cultured a slightly higher amount of immobilized cells and lincomycin was obtained more than those obtained by culture of spores immobilized on dry beads. This result indicates that immobilization of mycelial cells on pre-wetted beads was readily available. This technique is simple and no additional facilities are required for cell immobilization.

Repeated Fed-Batch Fermentation of Wheat Flour Solution by Mixed Lactic Acid Bacteria (혼합 젖산균을 이용한 밀가루 용액의 반복 유가식 발효)

  • Kim, Sang-Yong;Noh, Bong-Soo;Oh, Deok-Kun
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.2
    • /
    • pp.343-347
    • /
    • 1997
  • Effect of culture conditions on the fermentation of wheat flour solution by mixed lactic acid bacteria of Lactobacillus brevis, L. fermentum and L. plantarum was investigated. The optimum temperature for the fermentation of wheat flour solution was $35^{\circ}C$ because pH decreased the lowest value and TTA (total titrable acidity) increased the highest value at this temperature. In aerobic condition, fermentor was purged with air at 1.0 vvm and was purged with nitrogen gas at 1.0 vvm in anaerobic condition. The decrease of pH and the increase of TTA in aerobic condition were higher than those in anaerobic condition. In aerobic condition, the optimum condition of oxygen supply was found to be oxygen transfer rate coefficient of $60\;hr^{-1}$ which corresponded to agitation speed of 250 rpm in a 5 L fermentor. Repeated fed-batch cultures were performed using pH-stat in order to increase the productivity of fermented wheat flour. With increasing the repeated fraction of culture volume, mean cycle time increased but maximum operation time decreased. However, the volume of produced broth per culture volume per time and total volume of produced broth per culture volume were maximum at the repeated fraction of culture volume of 20%. In a repeated fed-batch fermentation of wheat flour solution using mixed lactic acid bacteria, the culture condition was optimum at temerature of $35^{\circ}C$, aeration rate of 1.0 vvm, oxygen transfer rate coefficient of $60\;hr^{-1}$, and repeated fraction of culture volume of 20%.

  • PDF

Antibody Production in Plant Cell Cultures

  • Lee, James M.
    • Proceedings of the Botanical Society of Korea Conference
    • /
    • 1995.06a
    • /
    • pp.67-78
    • /
    • 1995
  • Monoclonal antibodies (MoAbs) are a highly diversified class of proteins with major research and commercial applications such as diagnostics and therapeutics. Currently, the dominant method for producing MoAbs is through the hybridoma technique. However, this technique is slow, tedious, labor intensive, and expensive. The production of MoAbs in cultured transgenic plant cells can offer some advantages over that in the over that in the mammalian systems. The media to cultivate plant cells are well defined and inexpensive. Contamination by bacteria or fungi is easily monitored in plant tissue cultures. Furthermore, these contaminants are usually not potent pathogens to human beings. In our interdisciplinary research efforts, heavy chain monoclonal antibody (HC MAb) was inserted into Ti plasmid vector and transferred into A. tumefaciens for the transformation in tobacco cells. It was found that 76% of the transformants produced HC MAb. The presence of HC MAb in the cell membrane fraction indicated that the signal peptide was functional and efficient. The change of the HC MAb concentration during a batch culture followed a similar trend as dry cell concentration, indicating that the production of HC MAb was growth related. The long-term repeated subcultures of 11 cell lines showed that there was no obvious trend of neither the decrease nor the increase of the productivity with the repeated subcultures.

  • PDF

Degradation of Salicylic Acid by Free and Immobilized Cells of Pseudomonas sp. Strain NGK1

  • Patil, Neelakanteshwar-K.;Sharanagouda, U.;Niazi, Javed-H.;Kim, Chi-Kyung;Karegoudar, Timmanagouda-B.
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.1
    • /
    • pp.29-34
    • /
    • 2003
  • A Pseudomonas sp. strain NGK1 (NCIM 5120) capable of utilizing salicylate was immobilized in alginate and polyurethane foam (PUF). The degradation rate of salicylate by freely suspended cells was compared with the degradation rate by immobilized cells. In an initial 20 and 40 mM salicylate, free cells ($2{\times}10^{11}\;cfu\;ml^{-1}$) degraded to 16 and 14 mM, alginate-entrapped cells degraded to 18 and 26 mM, and PUF-entrapped cells degraded to 20 and 32 mM salicylate, respectively, in batch cultures. The alginate-and PUF-entrapped cells were used in repeated batch and continuous culture systems. The efficiency of both the immobilized systems f3r the degradation of salicylate was compared. It has been observed that the PUF-entrapped cells could be reused for more than 20 cycles whereas alginate-entrapped cells could be reused for a maximum of only 12 cycles, after which a decrease in degradation rat was observed with the initial 20 and 40 mM salicylate. The continuous degradation of sallcylate by freely suspended cells showed a negligible degradation rate of salicylate when compared with immobilized cells. With the immobilized cells in both alginate and polyurethane foam, the degradation rate increased with an increase in the dilution rate up to $2\;h^{-1}$ for 20 mM, and $1.5\;h^{-1}$ for 40 mM salicylate. The results revealed that PUF-entrapped cells were more efficient for the degradation of salicylate than alginate-entrapped cells and freely suspended cells.

High Productivity of t-PA in CHO Cells Using Hypoxia Response Element

  • Bae Gun-Won;Jeong Dae-Won;Kim Hong-Jin;Lee Gyun-Min;Park Hong-Woo;Choe Tae-Boo;Kang Seong-Man;Kim Ick-Young;Kim Ik-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.5
    • /
    • pp.695-703
    • /
    • 2006
  • The dissolved oxygen level of any cell culture environment has a critical effect on cellular metabolism. Specifically, hypoxia condition decreases cell viability and recombinant protein productivity. In this work, to develop CHO cells producing recombinant protein with high productivity, mammalian expression vectors containing a human tissue-type plasminogen activator (t-PA) gene with hypoxia response element (HRE) were constructed and stably transfected into CHO cells. CHO/2HRE-t-PA cells produced 2-folds higher recombinant t-PA production than CHO/t-PA cells in a $Ba^{2+}-alginate$ immobilized culture, and 16.8-folds in a repeated batch culture. In a non-aerated batch culture of suspension-adapted cells, t-PA productivity of CHO/2HRE/t-PA cells was 4.2-folds higher than that of CHO/t-PA cells. Our results indicate that HRE is a useful tool for the enhancement of protein productivity in mammalian cell cultures.

Enhancement of Iron Oxidation Rate by Immobilized Cells in Chemo-biological Process for $H_2S$ Removal (화학.생물학적 황화수소 제거 공정에 있어서 고정화 세포를 이용한 철산화 속도 증진)

  • Kim, Tae-Wan;Kim, Chang-Jun;Jang, Yong-Geun
    • KSBB Journal
    • /
    • v.14 no.5
    • /
    • pp.585-592
    • /
    • 1999
  • This study was aimed to enhance the Fe(II) oxidation rate using immobilized cells of Thiobacillus ferroxidans. For this purpose, a medium for the minimization of jarosite formation was developed first. Secondly, cell immobilization in celite beads was carried out. And then, repeated-batch and continuous operatons of Fe(II) oxidation by using immobilization cells were performed. In a series of flask cultures, three types of media were tested: media with a much lower salt concentration than that of the 9K medium; media which contained different nitrogen sources from that of the 9K medium, that is $(NH_4)_2HPO_4$, $NH_4Cl and HNO$_3$; media which contained $(NH_4)_2HPO_4$ as nitrogen and phosphate source, but without $K_2HPO_4$ as nitrogen and phosphate source in the 9K medium. As a result, the M16 medium which contained 3 g/L of $(NH_4)_2HPO_4$ as nitrogen and phosphate source was found to be the optimal one. It sustained good cell growth allowing no jarosite formation. In the repeated-batch operations, the rate of Fe(II) oxidation gradually increased to reach a maximum value as the batch was repeated. As a result of repeated-batch operations. a maximum Fe(II) oxidation rate was 2.33 g/L . h. In the continuous operations, the iron oxidation rate could be increased to 2.14 g/L .h at a dilution rate of 0.25 $h^{-1}$ which is greater than the maximum specific growth rate (0.12 $h^{-1}$) of the bacteria.

  • PDF

A Study on Continuous Alcohol Fermentation with Cell Recycle by Means of Membrane Separation (막분리를 이용한 미생물 재순환 연속 알콜발효에 관한 연구)

  • 이준형;목영일허병기
    • KSBB Journal
    • /
    • v.7 no.2
    • /
    • pp.139-143
    • /
    • 1992
  • One of the objectives of this work is to obtain information relevant to the industrial production of alcohol from sugar. The fermentation of alcohol by a strain of saccharomycess cerevisiae ATCC 24858 was studied In a continuous single-stage process with recycle of the cells via tangential flow microfiltration membranes. The experimental results reported in this study pertain to continuous cultures with total cell-recycle by varying the dilution rate (D=0.3, 0.5, and 0.7 $hr^{-1}$) and glucose concentration (50, 100, 150, and 200g/l sugar solution). Productivity using a repeated cell recycle system was found extremely high, 1.e., over 10 to 29 times higher than that of a smile batch system. When a sugar concentration of 200g/1 at dilution rate, 0.7 hr-1 was used, 83.9g/l ethanol was formed with an ethanol yield of 0.42(82% of theoretical) based on sugars utilized.

  • PDF